IXPE STUDIES OF PULSARS AND THEIR NEBULAE

NICCOLO' BUCCIANTINI (ON BEHALF OF THE IXPE TEAM) INAF ARCETRI - UNIV. FIRENZE - INFN

DEATH OF A MASSIVE STAR – BIRTH OF A PULSAR

STARS MORE MASSIVE THAN **8** M_{SUN} END THEIR LIFE IN SUPERNOVA EXPLOSIONS

STARS LESS MASSIVE THAN 25-30 M_{SUN} LEAVE BEHIND A COMPACT STELLAR REMNANT IN THE FORM OF A NEUTRON STAR

THE COMBINATION OF STRONG MAGNETIC FIELD (10¹²G) AND RAPID ROTATION (P=0.001-1S) CREATES A STRONG ELECTRIC FIELD AT THE SURFACE, EXTRACTING PAIRS AND PRODUCING PAIR CASCADES. OBSERVED AS PULSARS

PULSAR WIND NEBULAE – PWNE

PWNE ARE HOT BUBBLES OF RELATIVISTIC PARTICLES AND MAGNETIC FIELD: LAB FOR THE STUDY OF NON-THERMAL RADIATION

ORIGINATED BY THE INTERACTION OF THE ULTRA-RELATIVISTIC MAGNETISED PULSAR WIND WITH THE EXPANDING SNR: LAB FOR STELLAR EVOLUTION

GALACTIC ACCELERATORS. THE ONLY PLACE WHERE WE CAN STUDY THE PROPERTIES OF RELATIVISTIC SHOCKS (AS IN GRBS AND AGNS): LAB FOR PARTICLE ACCELERATION

ALLOW US TO INVESTIGATE THE DYNAMICS OF RELATIVISTIC OUTFLOWS: LAB FOR RELATIVISTIC FLUIDS

PWNE AS NON-THERMAL ACCELERATORS

The most efficient non-thermal accelerator.

PWNE AT DIFFERENT ENERGIES

PWNE AT DIFFERENT ENERGIES

PWNE POLARISATION

FINE STRUCTURES – A LAB FOR RELTIVISTICN FLUID DYNAMICS

THE PULSAR WIND

PSR WIND & MAGNETOSPHERE WELL **DESCRIBED BY FORCE FREE RMHD**

 $\nabla \cdot \boldsymbol{E} = 4\pi\rho, \quad \nabla \times \boldsymbol{E} = -\partial_{T}\boldsymbol{B}/c$ $\nabla \cdot \boldsymbol{B} = 0, \quad \nabla \times \boldsymbol{B} = \partial_t \boldsymbol{E}/c + \boldsymbol{J}$ $\rho \boldsymbol{E} + \boldsymbol{J} \times \boldsymbol{B} = 0$

in a Striped wind of alternating polarities

THE PULSAR WIND

PSR WIND & MAGNETOSPHERE WELL DESCRIBED BY FORCE FREE RMHD $\nabla \cdot \boldsymbol{E} = 4\pi\rho, \quad \nabla \times \boldsymbol{E} = -\partial_t \boldsymbol{B}/c$ $\nabla \cdot \boldsymbol{B} = 0, \quad \nabla \times \boldsymbol{B} = \partial_t \boldsymbol{E}/c + \boldsymbol{J}$ $\rho \boldsymbol{E} + \boldsymbol{J} \times \boldsymbol{B} = 0$

THE PULSAR WIND

PSR WIND & MAGNETOSPHERE WELL DESCRIBED BY FORCE FREE RMHD

 $\nabla \cdot \boldsymbol{E} = 4\pi\rho, \quad \nabla \times \boldsymbol{E} = -\partial_t \boldsymbol{B}/c$ $\nabla \cdot \boldsymbol{B} = 0, \quad \nabla \times \boldsymbol{B} = \partial_t \boldsymbol{E}/c + \boldsymbol{J}$ $\rho \boldsymbol{E} + \boldsymbol{J} \times \boldsymbol{B} = 0$

RELATIVISTIC MHD MODELS

THE WIND ANISOTROPY SHAPES THE TS STRUCTURE. DOWNSTREAM FLOW -EQUATORIAL COLLIMATION DUE TO THE TS SHAPE: A: ULTRARELATIVISTIC PULSAR WIND B: SUBSONIC EQUATORIAL OUTFLOW C: SUPERSONIC EQUATORIAL FUNNEL D: SUPER-FASTMAGNETOSONIC FLOW A: TERMINATION SHOCK FRONT B: RIM SHOCK C: FASTMAGNETOSONIC SURFACE

RELATIVISTIC MHD MODELS

THE WIND ANISOTROPY SHAPES THE TS STRUCTURE. DOWNSTREAM FLOW -EQUATORIAL COLLIMATION DUE TO THE TS SHAPE: A: ULTRARELATIVISTIC PULSAR WIND B: SUBSONIC EQUATORIAL OUTFLOW C: SUPERSONIC EQUATORIAL FUNNEL D: SUPER-FASTMAGNETOSONIC FLOW A: TERMINATION SHOCK FRONT B: RIM SHOCK C: FASTMAGNETOSONIC SURFACE

REPRODUCING OBSERVATIONS

MAIN TORUS INNER RING (WISPS STRUCTURE) KNOT BACK SIDE OF THE INNER RING

EACH FEATURE TRACES AN EMITTING REGION

..... AS BEST AS WE CAN

..... AS BEST AS WE CAN

RELATIVISTIC FERMI ACCELERATION

PERPENDICULAR RELATIVISTIC SHOCK - SUPERLUMINAL

MAXWELLIAN AT LOW ENERGIES

EVIDENCE FOR NON-THERMAL TAIL ONLY FOR SUBLUMINAL SHOCK

 $\sin(\theta_u) < (V_s/c_s)/\gamma \simeq 0.5/\gamma$

PSR WINDS ARE STRIPED AND THIS IMPLIES ALTERNATING FIELD POLARITIES IN THE PWN

PSR WINDS ARE STRIPED AND THIS IMPLIES ALTERNATING FIELD POLARITIES IN THE PWN

HD SHOCK

FAST-MAGNETOSONIC PRECURSOR

HARD SPECTRUM

PSR WINDS ARE STRIPED AND THIS IMPLIES ALTERNATING FIELD POLARITIES IN THE PWN

TEARING INSTAB

HD SHOCK

FAST-MAGNETOSONIC PRECURSOR

HARD SPECTRUM

TURBULENCE

EVIDENCE FOR TURBULENCE INSIDE PWNE

GAMMA-RAY FLARES

HIGH VORTICITY

TURBULENCE

EVIDENCE FOR TURBULENCE INSIDE PWNE

LARGE EXTENSION OF X-RAYS

TURBULENCE

EVIDENCE FOR TURBULENCE INSIDE PWNE

..... THE BAD

..... THE BAD

LUMINOSITY IS TOO PEAKED ON AXIS

THE BAD

..... THE BAD

..... THE BAD

THE UGLY?

3D ALLOWS FOR INNER REGION STILL HIGHER AXISYMMETRIC MAGNETISATION **TORUS-JET** $\sigma_0 = 0.025$: Magnetic Field [μ G] ×10¹⁷ 2.72.422.11.80 1.51.2-10.90.6 $-2 \cdot$ 0.3 $^{5}_{\times 10^{17}}$ 0 $\mathbf{2}$ 0.0 (Porth et al 13) $\times 10^{10}$ 2.72 2.42.11 1.81.50 1.2Olmi et al 2017 0 0 2 $^{-1}$ 0.9× [ly] 0.6 -2

y [ly]

-300

-200

-100

0

100

200

300

 $10^{18} {
m cm}$

VARIABILITY PROBLEM REMAINS

AVERAGE X-RAY PD ALWAYS < 15%

LARGE SCALE 3D DYNAMICS NOT THE SOLUTION

0.3

0.0

 $\times 10^{17}$

ADDING UNRESOLVED TURBULENCE

ADDING UNRESOLVED TURBULENCE

ONE NEED TO HAVE $\delta B/B \sim 1$ IN ORDER TO GET AVERAGE PD $\sim 20\%$

0.15

STRUCTURE OF YOUNG PWNE

Bucciantini - CDY Seminar - 2025

STRUCTURE OF YOUNG PWNE

STRUCTURE OF YOUNG PWNE

STRUCTURE & EVOLUTION OF PWNE

At T ~ Tch (3000-5000 yr) the PWN has expanded to reach the position of the SRN reverse shock This is the beginning of the so called "Reverberation phase" - expected compression of the PWN At T > few Tch the PWN should relax to the "Sedov driven phase" $R_{pwn} \propto t^{3/10}$

PWNE IN REVERBERATION

Not that many examples of PWNe in reverberation: Short phase duration (few 1000s yr) - Low PSR luminosity

PSR & PWN often displaced wrt the SNR center Compression might lead to re-brightening Formation of a relic nebula

PWNE IN REVERBERATION

Not that many examples of PWNe in reverberation: Short phase duration (few 1000s yr) - Low PSR luminosity

PSR & PWN often displaced wrt the SNR center Compression might lead to re-brightening Formation of a relic nebula

Forward Shock 2 pc Reverse Shock Pulsar wind Shock

Van der Swaluw 2003

PWNE – SYNCHROTRON DEGENERACY

Jet Dominated system

Variability in the jet

Nature of variability on magn. geometry

PWNE – SYNCHROTRON DEGENERACY

Jet Dominated system

Variability in the jet

Nature of variability on magn. geometry

PWNE – SYNCHROTRON DEGENERACY

Jet Dominated system

Variability in the jet

Nature of variability on magn. geometry

RADIO POLARIZATION 1

Some PWNe show a toroidal magnetic field structure in agreement with canonical model of confined PSR wind

Typical polarization is high ~ 40-50%

Dodson et al 2003

RADIO POLARIZATION 2

Some PWNe show a radial or dipole-like magnetic field geometry, typically attributed to RT instability from confining environment

RADIO POLARIZATION 3

Some PWNe show irregular polarization structures that do not map other observed features, or loop-like structures that are unrelated with either injection or environment

3C 58 - Preliminary

IXPE

IXPE - BROAD VIEW

Mission name	Imaging X-ray Polarimetry Explorer (IXPE)
Mission category	NASA Astrophysics Small Explorer (SMEX)
Operational phase	2021 launch, 2 years following 1 month commissioning, extension possible
Orbital parameters	Circular at 540–620 km altitude, equatorial; one ground station near equator
Spacecraft features	3-axis stabilized pointing (non-propellant), GPS time and position
Science payload	3 x-ray telescopes, 4.0-m focal length (deployed), co-aligned to star tracker
Telescope optics (×3)	24 monolithic (P+S surfaces) Wolter-1 electroformed shells, coaxially nested
Telescope detector (×3)	Polarization-sensitive gas pixel detector (GPD) to image photo-electron track
Polarization sensitivity	Minimum Detectible Polarization (99% confidence) MDP ₉₉ < 5.5%, 0.5-mCrab, 10 days
Spurious modulation	< 0.3% systematic error in modulation amplitude for unpolarized source
Angular resolution	< 30-arcsec half-power diameter (HPD)
Field of view (FOV)	\approx 10-arcmin diameter overlapping FOV of 3 detectors' polarization-sensitive areas
Energy band, resolution	2–8 keV, ≈ 20% @ 5.9 keV
Timing accuracy	$\approx 20~\mu s$, using GPS pulse-per-second signal and on-board clocks
X-ray calibration	Telescopes (optics & detector separately, combined) on-ground; detectors on-orbit

IXPE - BROAD VIEW

Mission name	Imaging X-ray Polarimetry Explorer (IXPE)
Mission category	NASA Astrophysics Small Explorer (SMEX)
Operational phase	2021 launch, 2 years following 1 month commissioning, extension possible
Orbital parameters	Circular at 540–620 km altitude, equatorial; one ground station near equator
Spacecraft features	3-axis stabilized pointing (non-propellant), GPS time and position
Science payload	3 x-ray telescopes, 4.0-m focal length (deployed), co-aligned to star tracker
Telescope optics (×3)	24 monolithic (P+S surfaces) Wolter-1 electroformed shells, coaxially nested
Telescope detector (×3)	Polarization-sensitive gas pixel detector (GPD) to image photo-electron track
Polarization sensitivity	Minimum Detectible Polarization (99% confidence) MDP ₉₉ < 5.5%, 0.5-mCrab, 10 days
Spurious modulation	< 0.3% systematic error in modulation amplitude for unpolarized source
Angular resolution	< 30-arcsec half-power diameter (HPD)
Field of view (FOV)	\approx 10-arcmin diameter overlapping FOV of 3 detectors' polarization-sensitive areas
Energy band, resolution	2–8 keV, ≈ 20% @ 5.9 keV
Timing accuracy	\approx 20 μs , using GPS pulse-per-second signal and on-board clocks
X-ray calibration	Telescopes (optics & detector separately, combined) on-ground; detectors on-orbit

IXPE – GPD

IXPE - X-RAY POLARIMETRY - CRAB

Bucciantini et al 2023

IXPE - X-RAY POLARIMETRY - CRAB PSR

5- sigma detection in the core of P1

15% PF in the core of P1

Wong et al 2024

IXPE – X–RAY POLARIMETRY – CRAB PSR

IXPE – X–RAY POLARIMETRY – CRAB PSR

IXPE - X-RAY POLARIMETRY - CRAB PSR

STRIPED WIND POLARIMETRY – CRAB PSR

STRIPED WIND POLARIMETRY – CRAB PSR

IXPE - X-RAY POLARIMETRY - CRAB PSR

IXPE – X–RAY POLARIMETRY – CRAB PSR

Need to introduce some intrinsic depolarisation wrt fully ordered striped wind (PD is just 1/4)

Perhaps one can 'fit" the main peak but not the the interpulse

IXPE – X–RAY POLARIMETRY – VELA

Fei et al 2023

		-2 ^b	-1 ^b	0^{b}	1^{b}	2^b	
	2^{a}	37 ± 18 -14 ±14	27 ± 13 -21 ± 14	$61{\pm}12$ -41.7 ${\pm}5.3$	$\begin{array}{c} 37{\pm}13\\ -52{\pm}10\end{array}$	$47{\pm}15$ -53.8 ${\pm}8.9$	PD^{c} PA^{d}
N.P	1^{a}	$33{\pm}10$ 6.3 ${\pm}9.0$	$48.5{\pm}5.0$ $-22.4{\pm}3.0$	53.5 ± 4.1 -42.2 ± 2.2	56.8 ± 7.1 -50.2 ± 3.6	$47{\pm}13$ -58.2 ${\pm}7.7$	PD^{c} PA^{d}
	0 ^{<i>a</i>}	10.3 ± 8.8 -7.4 ± 24	$34.4{\pm}3.9$ $-34.3{\pm}3.3$	$49.0{\pm}2.5$ $-50.3{\pm}1.5$	$62.8{\pm}4.0$ $-53.9{\pm}1.9$	$44{\pm}11$ -50.5 ${\pm}7.4$	$\begin{vmatrix} \mathrm{PD}^{c} \\ \mathrm{PA}^{d} \end{vmatrix}$
	-1 ^a	$\begin{vmatrix} 21\pm12\\ -47\pm17 \end{vmatrix}$	27.5 ± 7.2 -68.3 ± 7.5	$38.5{\pm}4.0$ -70.0 ${\pm}3.0$	57.1 ± 5.4 -69.8 ± 2.7	$44{\pm}12$ -57.3 ${\pm}7.9$	$\begin{vmatrix} \mathrm{PD}^{c} \\ \mathrm{PA}^{d} \end{vmatrix}$
PAN.	- 2 ^a	$34{\pm}15$ -51 ${\pm}13$	$4.5^{+13}_{-4.5}$ -6.0 ± 85	34.9 ± 9.5 86.1 ± 7.8	$43{\pm}12$ -84.2 ${\pm}7.6$	$17{\pm}14$ $-70{\pm}23$	$\begin{vmatrix} \mathrm{PD}^{c} \\ \mathrm{PA}^{d} \end{vmatrix}$
2		<u> </u>		DE			

Very high PF suggest no turbulence in the PWNe

Unlikely reconnection to play a major role in accelerating particles

Old sytems should be more turbulent.

IXPE – X–RAY POLARIMETRY – VELA EXTENDED

Liu et al 2023

IXPE – X–RAY POLARIMETRY – VELA EXTENDED

Dodson et al 2003

IXPE – X–RAY POLARIMETRY – VELA EXTENDED

Dodson et al 2003

IXPE – X–RAY POLARIMETRY – MSH 15–52

Romani et al 2023

CLEAR EVIDENCE OF HIGH POLARISATION `30% IN THE TORUS

INCREASING LEVEL OF POLARISATION 30% TO 70% FOUND ALONG THE JET PA NOT ALIGNED

Polarisation of the Pulsed Emission suggest high altitude emission in the PSR magnetosphere

BOW-SHOCK PWNE

PSR B2224+65 (Chatterjee & Cordes 2002)

BOW-SHOCK PWNE

PSR B2224+65 (Chatterjee & Cordes 2002)

BOW-SHOCK PWNE

BOW-TAILS IN X-RAY

Kargaltsev & Pavlov 2008

PAIR ESCAPE

The are BS PWNe where the X-ray "tail" is where it should not be!

The particles in these features are ~ PSR voltage

TeV halo suggest strong diffusion

IXPE – X–RAY POLARIMETRY – G 0.13–0.11

IXPE – X–RAY POLARIMETRY – G 0.13–0.11

IXPE – X–RAY POLARIMETRY – G 0.13–0.11

IXPE - X-RAY POLARIMETRY - G 0.13-0.11

Φ

CONCLUSIONS

POLARIZATION IS A VERY CONSTRAINIG PROBE OF TURBULENCE
POLARIZATION IS A VERY CONSTRAINIG PROBE OF TURBULENCE

CANONICAL PWNR MODEL WORKS WELL BUT

SEVERAL LINE OF EVIDENCE FOR TURBULENCE

NOT CLEAR RELATION BETWEEN TURBULENCE AND ACCELERATION

POLARIZATION IS A VERY CONSTRAINIG PROBE OF TURBULENCE

CANONICAL PWNR MODEL WORKS WELL BUT

SEVERAL LINE OF EVIDENCE FOR TURBULENCE

NOT CLEAR RELATION BETWEEN TURBULENCE AND ACCELERATION

POLARIZATION IS HIGHLY CONNSTRAINIG FOR PSRS

CURRENT PSR POLARIZATION MEASURES ONLY FOR CRAB

POLARIZATION IS A VERY CONSTRAINIG PROBE OF TURBULENCE

CANONICAL PWNR MODEL WORKS WELL BUT

SEVERAL LINE OF EVIDENCE FOR TURBULENCE

NOT CLEAR RELATION BETWEEN TURBULENCE AND ACCELERATION

POLARIZATION IS HIGHLY CONNSTRAINIG FOR PSRS

CURRENT PSR POLARIZATION MEASURES ONLY FOR CRAB

FIRST MEASURE OF X-RAY SPACE RESOLVED POLARISATION IN PWNE LARGE DIVERSITY IS SEEN IN TERMS OF MAGNETIC TURBULENCE CORRELATION VS ANTICORRELATION WITH RADIO IS PUZZLING

POLARIZATION IS A VERY CONSTRAINIG PROBE OF TURBULENCE

CANONICAL PWNR MODEL WORKS WELL BUT

SEVERAL LINE OF EVIDENCE FOR TURBULENCE

NOT CLEAR RELATION BETWEEN TURBULENCE AND ACCELERATION

POLARIZATION IS HIGHLY CONNSTRAINIG FOR PSRS

CURRENT PSR POLARIZATION MEASURES ONLY FOR CRAB

FIRST MEASURE OF X-RAY SPACE RESOLVED POLARISATION IN PWNE

LARGE DIVERSITY IS SEEN IN TERMS OF MAGNETIC TURBULENCE

CORRELATION VS ANTICORRELATION WITH RADIO IS PUZZLING

POLARIZATION IN CRAB PSR NEED FURTHER MODELLING