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Origin of bright emission of hard X-rays from black-hole (BH) coronae?

Hard state in X-ray binaries (XRBs):

Zdziarski & Gierlinski (2004)
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e Nonthermal emission spectra peaked at
around ~ 100 keV (i.e., in hard X-rays)

Luminous cores of active galaxies :
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X-ray spectra similar to hard state in XRBs
Cores of active galaxies may be also sources of
high-energy neutrinos [e.g., Murase et al.
(2020)]



Origin of bright emission of hard X-rays from black-hole (BH) coronae?

Physics picture:
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Some open questions:

e How are coronal electrons energized?
Scattered

e Energy partitioning between escaping hard photons

photons, protons, and electrons?
e Proton acceleration & production of g

high-energy neutrinos?
Accretion disk
= this can be now studied with radiative . “Hot corona” ji '
particle-in-cell (PIC) plasma simulations ¥
(self-consistent coupling of plasma kinetics & T

radiative transfer)
Black Hot inner

hole disk



Emission of hard X-rays via turbulence mediated Comptonization

Why turbulence?

e Instabilities in accreting flow can lead to turbulence

® Large separation between global scales of the flow and the
dissipative/kinetic scales

e Support in global MHD simulations

Reconnection and/or turbulence?

e Turbulence can form reconnecting sheets, similarly isolated current
layers evolve into turbulent state
= reconnection and turbulence are not mutually exclusive

e Key difference is in volume filling fraction of dissipation regions
= turbulence is more volume-filling, reconnection setups feature

isolated sheets in a quiescent upstream plasma

[see also Beloborodov (2017), Sironi & Beloborodov (2020), Sridhar et al. (2021, 2022)]
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Regime(s) of turbulence in BH coronae

® Large radiative compactness & moderate optical depth
{ ~ 4m(myp/me)(L/Lg)(R/Rg) ™ > 1 T ~ 1
= strong coupling between the radiation & plasma:
rapid cooling of particles, electron-positron pair creation
® Large electron magnetization
0. = B2 /4mngmec? > 1
® Outer scale fluctuations may be large (this talk) or small
compared to the guide magnetic field
e Composition may be pair (PART | of this talk) or electron-ion (PART Il)

dominated

= We use particle-in-cell (PIC) simulations /w radiative transfer:

Injection of seed photons from a thermal bath

Diffusive photon & charged particle escape

Spatially resolved Compton scattering (Monte-Carlo method)
with QED (Klein-Nishina) cross-sections

X-ray photon energy density
(Tristan-MP v2 radiative PIC simulation
on a 12803 grid)
T

Groselj et al. (PRL 2024)




Proof of principle: 3D local turbulent box w/ pair plasma composition

1st PIC turbulence simulations with self-consistent Compton
scattering at moderate optical depth:
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Emission mechanism: Comptonization via turbulent motions & intermittent hotspots
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Contact with observations of Cygnus X-1

Electron spectrum ~ quasi-thermal
part contributed by bulk motions

(dashed blue line) + nonthermal tail | Cyg X-1

from localized “hotspots”

Peak of Comptonized emission
mainly shaped by bulk motions w/
effective temperature ~ 100 keV

Nonthermal electron tail shapes the
MeV emission
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Electron-ion turbulent corona & application to AGNs

Released power partitioned between X-rays and ions as quantified by the ion heating fraction

= a well-known plasma parameter but unexplored in regime applicable to BH coronae

Coronal turbulence with large-amplitude fluctuations is nominally (i.e., w/o efficient ion heating) supersonic &

trans-Alfvenic! = expect shocks
Preventing (ion) energy accumulation requires open systems with escape of charged particles!
= escape gives steady state nonthermal spectra of kinetic turbulence even w/o radiative cooling
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Particle energization at turbulent shocks & current sheets

2D radiative PIC simulations (76802 box, mi/me = 144):
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Particle energization at turbulent shocks & current sheets

e Coronal turbulence maintains a two-temperature state, with ions much hotter than electrons
e Electrons are intermittently energized near current sheets, ions at both shocks and current sheets
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Contact with X-ray observations of NGC 4151

Excellent agreement between
direct predictions from radiative
PIC simulations & X-ray
observations

The compactness affects primarily
the MeV range, which is shaped by
the nonthermal electron tail
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Efficient production of non-thermal ions at high compactness
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Implications for multi-messenger emission

Predicting neutrino emission requires extrapolations of PIC simulation results to (much) larger domains

Estimates suggest that turbulence can power both the observed X-ray and neutrino emission [see also, e.g.,
Murase et al. (2024), Mbarek et al. (2024), Fiorillo et al. (2024)]

lon heating fraction limits amount of power in CR protons, and in turn the resulting neutrino emission
(models favor large heating fraction, consistent with our results)
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Summary

Now possible to study the microphysics of particle energization and emission in BH coronae
from first principles using radiative PIC simulations (plasma kinetics + radiative transfer)

Turbulence is a viable mechanism for powering high-energy multi-messenger emission of BH
coronae

Dissipated power is partitioned approximately evenly between X-rays and (nonthermal) ions

Similar models could be applied to other radiatively dense environments (e.g., GRBs)



