

Origin of bright emission of hard X-rays from black-hole (BH) coronae?

Hard state in X-ray binaries (XRBs):

Zdziarski & Gierlinski (2004) Hard state Cygnus X-1 EGRET 10-3 Cygnus X-1 ELAST 10-3 ELAST ELAST ELAST 10-10-5 E [keV]

 Nonthermal emission spectra peaked at around ~ 100 keV (i.e., in hard X-rays)

<u>Luminous cores of active galaxies:</u>

- X-ray spectra similar to hard state in XRBs
- Cores of active galaxies may be also sources of high-energy neutrinos [e.g., Murase et al. (2020)]

Origin of bright emission of hard X-rays from black-hole (BH) coronae?

Physics picture:

 Comptonization of soft photons in a "hot corona" of moderate optical depth

Some open questions:

- How are coronal electrons energized?
- Energy partitioning between escaping photons, protons, and electrons?
- Proton acceleration & production of high-energy neutrinos?
- ⇒ this can be now studied with *radiative* particle-in-cell (PIC) plasma simulations (self-consistent coupling of plasma kinetics & radiative transfer)

Emission of hard X-rays via turbulence mediated Comptonization

Why turbulence?

- Instabilities in accreting flow can lead to turbulence
- Large separation between global scales of the flow and the dissipative/kinetic scales
- Support in global MHD simulations

Reconnection and/or turbulence?

- Turbulence can form reconnecting sheets, similarly isolated current layers evolve into turbulent state
 - ⇒ reconnection and turbulence are not mutually exclusive
- Key difference is in volume filling fraction of dissipation regions
 ⇒ turbulence is more volume-filling, reconnection setups feature
 isolated sheets in a quiescent upstream plasma

[see also Beloborodov (2017), Sironi & Beloborodov (2020), Sridhar et al. (2021, 2022)]

Regime(s) of turbulence in BH coronae

• Large radiative compactness & moderate optical depth

$$\ell \sim 4\pi (m_{\rm p}/m_{\rm e})(L/L_{\rm E})(R/R_{\rm g})^{-1} \gg 1$$
 $\tau_{\rm T} \sim 1$

- ⇒ strong coupling between the radiation & plasma: rapid cooling of particles, electron-positron pair creation
- Large electron magnetization

$$\sigma_{\rm e} = B^2/4\pi n_{\rm e} m_{\rm e} c^2 \gg 1$$

- Outer scale fluctuations may be large (<u>this talk</u>) or small compared to the guide magnetic field
- Composition may be pair (<u>PART I of this talk</u>) or electron-ion (<u>PART II</u>)
 dominated

⇒ We use particle-in-cell (PIC) simulations /w radiative transfer:

- Injection of seed photons from a thermal bath
- Diffusive photon & charged particle escape
- Spatially resolved Compton scattering (Monte-Carlo method)
 with QED (Klein-Nishina) cross-sections

X-ray photon energy density (Tristan-MP v2 radiative PIC simulation on a 1280³ grid)

Groselj et al. (PRL 2024)

Proof of principle: 3D local turbulent box w/ pair plasma composition

- Electron-positron plasma used for simplicity [for self-consistent pair balance see Nattila (2024)]
- Steady state reached when power input from (external) turbulence forcing matches escaping photon luminosity
- Energy budget dominated by radiation and magnetic fields

1st PIC turbulence simulations with self-consistent Compton scattering at moderate optical depth:

Groselj et al. (PRL 2024)

Emission mechanism: Comptonization via turbulent motions & intermittent hotspots

- Comptonization leads to radiative damping of turbulent cascade
 non-universal turbulence spectra
- Large fraction of the turbulence power is passed directly to photons
- Anisotropic emission w.r.t. mean magnetic field: $I(\hat{\mathbf{n}} \perp \mathbf{B}_0) \approx 3 \, I(\hat{\mathbf{n}} \parallel \mathbf{B}_0)$
- Fraction of power that arrives at microscales channeled into nonthermal electrons at intermittent "hotspots"

Contact with observations of Cygnus X-1

- Electron spectrum ~ quasi-thermal part contributed by bulk motions (dashed blue line) + nonthermal tail from localized "hotspots"
- Peak of Comptonized emission mainly shaped by bulk motions w/ effective temperature ~ 100 keV
- Nonthermal electron tail shapes the MeV emission

Electron-ion turbulent corona & application to AGNs

- Released power partitioned between X-rays and ions as quantified by the ion heating fraction
 ⇒ a well-known plasma parameter but unexplored in regime applicable to BH coronae
- Coronal turbulence with large-amplitude fluctuations is *nominally* (i.e., w/o efficient ion heating) supersonic & trans-Alfvenic! ⇒ expect shocks
- Preventing (ion) energy accumulation requires open systems with escape of charged particles!
 ⇒ escape gives steady state nonthermal spectra of kinetic turbulence even w/o radiative cooling

Gorbunov, Groselj, & Bacchini (in prep.)

Particle energization at turbulent shocks & current sheets

2D radiative PIC simulations (7680 2 box, $m_i/m_e = 144$):

Groselj et al. (in prep.)

Particle energization at turbulent shocks & current sheets

- Coronal turbulence maintains a two-temperature state, with ions much hotter than electrons
- Electrons are intermittently energized near current sheets, ions at both shocks and current sheets

Contact with X-ray observations of NGC 4151

- Excellent agreement between direct predictions from radiative PIC simulations & X-ray observations
- The compactness affects primarily the MeV range, which is shaped by the nonthermal electron tail

Efficient production of non-thermal ions at high compactness

- Ion spectrum hardens with growing compactness and extends to higher energies
- Spectrum of (cooled) electrons depends weakly on compactness \(\ell \)
- Significant fraction of turbulence power goes to ions, i.e. the ion "heating" fraction is ≥ 50%

Implications for multi-messenger emission

- Predicting neutrino emission requires extrapolations of PIC simulation results to (much) larger domains
- Estimates suggest that turbulence can power both the observed X-ray and neutrino emission [see also, e.g., Murase et al. (2024), Mbarek et al. (2024), Fiorillo et al. (2024)]
- Ion heating fraction limits amount of power in CR protons, and in turn the resulting neutrino emission (models favor large heating fraction, consistent with our results)

Mbarek et al. [incl. Groselj] (in prep.)

Summary

- Now possible to study the microphysics of particle energization and emission in BH coronae from first principles using radiative PIC simulations (plasma kinetics + radiative transfer)
- Turbulence is a viable mechanism for powering high-energy multi-messenger emission of BH coronae
- Dissipated power is partitioned approximately evenly between X-rays and (nonthermal) ions
- Similar models could be applied to other radiatively dense environments (e.g., GRBs)