Galactic *Resolved and Unresolved* gamma-ray sources at very high energy

A phenomenological study [work with Silvia Vernetto]

Paolo Lipari INFN Roma Sapienza

CDY seminar March 20th 2024

Outline:

- 1. Introduction: Components of the gamma-ray sky
- 2. Source Catalogs
- 3. Spectral Shapes of the sources and the *"Cumulative Source Spectrum"*
- 4. Diffuse gamma ray flux measurements
- 5. *Geometrical Method* to estimate the Unresolved Source Flux
- 6. Conclusion and Outlook

Gamma Ray Sky Fermi-LAT (E > 100 MeV)

Ensemble of (quasi)-point-like sources [Galactic+extragalactic] Diffuse Flux [Galactic + extragalactic (isotropic)]

Gamma Ray emission from the Milky Way:

$$Q(E) = Q_{\rm ism}(E) + Q_{\rm sources}(E)$$

- Cosmic Ray interactions during propagation in the interstellar medium.
- Sources

$$\phi(E, \Omega, \Delta \Omega) = \phi_{\text{ism}} + \phi_{\text{sources}}$$
$$= \phi_{\text{ism}} + \phi_{\text{sources}}^{\text{resolved}} + \phi_{\text{sources}}^{\text{unresolved}}$$

Diffuse Flux in the direction Ω

obtained as the integral of the emission along the line of sight

[absorption effects important only at high energy $E \gtrsim 100 \text{ TeV}$]

Emission generated by Cosmic Rays distributed in Galactic space

absorption

$$\phi_{\gamma}(E,\Omega) = \frac{1}{4\pi} \int_0^\infty d\ell \ q_{\gamma}[E,\vec{x}_{\odot} + \ell \hat{\Omega}] \ e^{-\tau_{\gamma}(E,\Omega,\ell)}$$

$$\phi_{\nu}(E,\Omega) = \frac{1}{4\pi} \int_0^\infty d\ell \ q_{\nu}[E,\vec{x}_{\odot} + \ell \hat{\Omega}]$$

Calculation of "interstellar" emission: Leading (proton-proton) term for hadronic mechanism:

Sources of uncertainties in the calculation of the Diffuse Interstellar emission fluxes:

- 1. Modeling of hadronic interactions (good control, effects are only minor)
- 2. Description of matter (for hadronic mechanism) (+radiation and magnetic field for leptonic mechanisms) in the Milky Way.
- 3. Description of the Cosmic Ray spectra
 - Spectra at the Earth
 - Space dependence of the spectra

Previous work on the diffuse (interstellar emission) gamma-ray [andnneutrino] fluxes

P. L. and S. Vernetto,
"Diffuse Galactic gamma ray flux at very high energy",
Phys. Rev. D 98, no.4, 043003 (2018)
[arXiv:1804.10116 [astro-ph.HE]].

S. Vernetto and P. L.,

"Diffuse Galactic gamma-ray and neutrino fluxes at very high energy and the Galactic/extragalactic Cosmic Ray transition", PoS **ICRC2021**, 923 (2021) Factorization (of energy and space dependences) of the CR spectra

$$\phi_p(E, \vec{x}) = \phi_p^{\text{loc}}(E) \times f_{\text{space}}(\vec{x})$$

Factorization of (energy and space) for the gamma ray and neutrino source

$$q_{\nu,\gamma}(E,\vec{x}) = q_{\nu,\gamma}^{\rm loc}(E) \times f_{\rm space}(\vec{x}) \times$$

$$\left(\frac{n_{\rm ism}(\vec{x})}{n_{\rm ism}(\vec{x}_{\odot})}\right)$$

Factorization of (energy and angle) of the gamma ray [no-absorption] and neutrino diffuse fluxes

$$\phi_{\nu,\gamma}(E,\Omega) = \frac{q_{\nu,\gamma}^{\text{loc}}(E)}{4\pi} T(\Omega)$$
$$T(\Omega) = \frac{1}{n_{\text{ism}}(\vec{x_{\odot}})} \int_{0}^{\infty} dt \ f_{\text{space}}(\vec{x_{\odot}} + t \ \hat{\Omega}) \times n_{\text{ism}}(\vec{x_{\odot}} + t \ \hat{\Omega})$$

2021 - measurement of the Gamma Ray diffuse flux by the Tibet Asg collaboration

Models: LV-2018

Space independent CR Space dependent CR

M. Amenomori *et al.* [Tibet AS γ Coll.], "First Detection of sub-PeV Diffuse Gamma Rays from the Galactic Disk: Evidence for Ubiquitous Galactic Cosmic Rays beyond PeV Energies" Phys. Rev. Lett. **126**, no.14, 141101 (2021) [arXiv:2104.05181 [astro-ph.HE]].

Gamma-ray source catalogs

Space $E_{\gamma} \simeq 0.1 \div 1000 \text{ GeV}$

Ground Arrays

Cherenkov $E_{\gamma} \simeq 0.1 \div 100 \text{ TeV}$

 $E_{\gamma} \lesssim 30 \text{ PeV}$ LHAASO

Catalogs of gamma-ray sources

- 1. Fermi-LAT [7195 sources E > 100 MeV] 4th General Catalog (Data Release 4) 4FGL-DR4
- 2. HESS Galactic Plane Survey [78 sources] $|b| < 3^{\circ} -110^{\circ} \le \ell \le +65^{\circ}$
- 3. HAWC 3rd Catalog [65 sources]
- 4. LHAASO 1st Catalog [90 sources (WCDA + KM2A)]
 4a LHAASO WCDA [69 sources]
 4b LHAASO KM2A [75 sources]

Catalogs of gamma-ray sources

- 1. Fermi-LAT [7195 sources E > 100 MeV] 4th General Catalog (Data Release 4) 4FGL-DR4
- 2. HESS Galactic Plane Survey [78 sources] $|b| < 3^{\circ}$ $-110^{\circ} \le \ell \le +65^{\circ}$

3. HAWC 3rd Catalog [65 sources]

4. LHAASO 1st Catalog [90 sources (WCDA + KM2A)]
4a LHAASO WCDA [69 sources]
4b LHAASO KM2A [75 sources]
EAS telescopes

LHAASO WCDA LHAASO KM2A

LHAASO bird view in Oct. 2019

 $Q_{\text{sources}}(E) = \sum q_j(E)$ Spectral shape of Spectra of the ensemble

of all Galactic sources

Spectra of individual sources

Fundamental Task:

Understanding the properties and *nature* of the Galactic sources

Cumulative source spectrum in the sky region

Spectral Index of the cumulative source spectrum

Spectral shapes of the fluxes:

$$\phi(E) = K \left(\frac{E}{E_0}\right)^{-\alpha}$$

Power Law

$$\phi(E) = K \left(\frac{E}{E_0}\right)^{-(\alpha_0 + \beta \ln E/E_0)}$$
 LogParabola

$$\phi(E) = K \left(\frac{E}{E_0}\right)^{\frac{d}{b} - \alpha_0} \exp\left[-\frac{d}{b^2} \left(1 - \left(\frac{E}{E_0}\right)^b\right)\right]$$
Power Law SuperExpCutoff

$$\phi(E) = K \left(\frac{E}{E_0}\right)^{-\alpha} e^{-E/E_{\rm cut}}$$

Power Law + exponential cutoff

Spectral shapes of the fluxes:Fermi-LAT uses
these 3 forms
$$\phi(E) = K \left(\frac{E}{E_0}\right)^{-\alpha}$$
Power Law $\phi(E) = K \left(\frac{E}{E_0}\right)^{-(\alpha_0 + \beta \ln E/E_0)}$ LogParabola $\phi(E) = K \left(\frac{E}{E_0}\right)^{\frac{d}{b} - \alpha_0} \exp\left[-\frac{d}{b^2} \left(1 - \left(\frac{E}{E_0}\right)^b\right)\right]$ Power Law
SuperExpCutoff $\phi(E) = K \left(\frac{E}{E_0}\right)^{-\alpha} e^{-E/E_{cut}}$ Power Law +
exponential cutoff

Spectral Index ("slope")
$$\alpha(E) = -\frac{d\log\phi(E)}{d\log E}$$

$$\alpha(E) = \alpha_0 + 2\beta \, \ln \frac{E}{E_0}$$

Spectral index for Logparabola shape

(linear in logE)

$$\phi(E) = K \left(\frac{E}{E_0}\right)^{-(\alpha_0 + \beta \ln E/E_0)}$$
$$\phi(E) = K' \exp\left[-\frac{(\ln E - \ln E'_0)^2}{(2\beta)^{-1}}\right]$$

LogParabola form

FERMI 4th General Catalog 4FGL-DR4 (7195 sources)

Separation of Galactic and extra-Galactic population of sources in the Fermi-LAT data

Classification of Fermi-LAT sources 48 classes in catalog.

Galactic sources: 0.082 Pulsars, SNR, Binary systems 590 + 8 (Novae)

Extra-Galactic sources: 0.56 AGN, Galaxies 4028

Do not know0.36Unassociated / Unknown2577

Fermi-LAT sources (4FGL-DR4)

Fraction of flux

0.0

Fraction of FLUX 1.0 other **UKN** 0.8 0.6 AGN 0.4 **SNR** 0.2 **PSR** PWN+SPP 0.1 10100 1000 1

Energy (GeV)

Fraction Source Numbers

Spectral shapes of the Fermi-LAT sources [Select sources in the disk]

 $|b| < 3^{\circ}$ (1007 sources)

Bright Pulsars sources 108 sources account for 58 % of the flux (> 1 GeV)

104/108 sources have the "PLSuperExpCutoff" spectral form (cutoff in the few GeV range)

293 Power Law spectra (15 % of Non-pulsar flux)

600 LogParabola spectra (85 % of Non-pulsar flux)

Spectral Index

Fermi-LAT sources $| \sin b | < 0.1$

5 brightest sources at 1 GeV

5 brightest sources at 10 GeV

LHAASO 1st catalog

Water Cherenkov Detector Array [WCDA]

69 sources Power law fits

$$E_0 = 3 \text{ TeV}$$

Kilometer SquaredArray[KM2A]75 sourcesPower law fits $E_0 = 50 \text{ TeV}$

[KM2A - high]

44 KM2A sources are detected above 100 TeV $\,$

54 sources are measured by both [WCDA + KM2A] instruments Spectrum measured in a very broad range Spectral indices of sources in the LHAASO catalog Sources are significantly softer at higher energy

54 LHAASO sources observed by both [WCDA + KM2A]

For all sources [minus 1]

the spectrum softens at higher energy

LHAASO catalog sources

Spectral Index for the 54 LHAASO sources observed by both WCDA and KM2A

Spectra joined at the intersection point of the two fits

It is remarkable that a "cumulative spectrum" that is in good approximation has the form of a smooth power-law emerges from the combination of components that have different form.

Similar result can be seen forr extragalactic sources

P. Lipari,
"The origin of the power-law form of the extragalactic gamma-ray flux" Astropart. Phys. **125**, 102507 (2021) doi:10.1016/j.astropartphys.2020.102507 [arXiv:2001.00982 [astro-ph.HE]].

This suggests that perhaps also the spectrum of cosmic rays at the Earth emerges as the result of the sum of different components, and has *potentially deep implications* for the understanding of particle acceleration

Power-law distributions

appear widely in a very broad range of fields: physics, biology, earth and planetary science economics and finances, social sciences,

.

The origin of power-law behavior has been a topic of debate for more than a century

Gutenberg-Richter law for earthquake frequency as a function of magnitude

 $\log_{10} N = a - b m$

 $dN/d\mathcal{E} \propto \mathcal{E}^{-(b+1)}$

Earthquakes in California 1910-1992

earthquake magnitude

M.E.J. Newman "Power–laws, Pareto distributions and Zipf's law" Contemporary Physics 46, 323 (2005) arXiv:cond-mat/0412004 [cond-mat.stat-mech]

Cumulative distributions of Moon craters

crater diameter in km

Concept of "Self Organized Criticality"

"Sand Pile" model

P. Bak, C. Tang and K. Wiesenfeld,"Self-organized criticality: An Explanation of 1/f noise"Phys. Rev. Lett. 59, 381 (1987).

P. Bak, C. Tang and K. Wiesenfeld, "Self-organized criticality"Phys. Rev. A 38, 364 (1988).

"Long-Term Fluences of Energetic Particles in the Heliosph 27th ICRC Hamburg, (2001).

Estimate of the Unresolved Source Flux

$$\frac{aN_s}{d^3x\,dL\,dR}$$

177

Distribution of sources in the Milky Way

Number of sources as function of:

R

Position in space \vec{x}

Luminosity

$$L[E_{\min}, E_{\max}]$$

Morphology (Linear size) Flux from one source

$$[E_{\min}, E_{\max}]$$

$$\phi = \frac{L}{4\pi \langle E \rangle} \frac{1}{|\vec{x} - \vec{x}_{\odot}|^2}$$

Flux from the ensemble of all sources

$$\phi_{\text{sources}}(\Delta\Omega) = \int_{\Delta\Omega} d^3x \int dR \int dL \ L \ \frac{dN_s}{dL \ dR \ d^3x} \ \frac{1}{|\vec{x} - \vec{x}_{\odot}|^2}$$

integration in the space volume $% \Omega$ inside solid angle $~\Delta \Omega$

$$\begin{split} \phi_{\rm sources}^{\rm unresolved}(\Delta\Omega) &= \\ \int_{\Delta\Omega} d^3x \, \int dR \, \int dL \, L \, \frac{dN_s}{dL \, dR \, d^3x} \, \frac{1}{|\vec{x} - \vec{x}_{\odot}|^2} \times \\ \\ \text{include cut to}_{\text{select faint sources}} &\times \, \Theta[\phi < \phi_{\min}^{\rm telescope}(\Omega, L, R)] \end{split}$$

Calculation of the unresolved flux requires:

[1] Knowledge of the telescope sensitivity

[2] Good model for the Galactic sources distribution

Factorization hypothesis:

Space, Luminosity, Morphology distributions

$$\frac{dN_s}{d^3x \, dL \, dR} = f(\vec{x}) \, g(L) \, h(R)$$

Motivation for this factorization is simplicity [but it is very likely that this factorization is not exact, and the violations could be significant] Method to estimate the unresolved flux:

- [0] Assume the validity of the factorization of the source distributions.
- [1] Assume constant linear size R for the sources
- [2] Adopt a model for the space distribution of the sources[i.e. Pulsar distribution, SNR distribution,]
- [3] Adopt a form for the luminosity distribution that depends on few parameters.
- [4.] Interpret the Angular distribution of the Resolved Sources to estimate the parameters of the luminosity distribution
- [5] Calculate the Unresolved Source flux

Illustrate the (very simple) geometrical idea of the method:

Galaxy is a thin homogeneous disk Solar system displaced with respect to the center. Identical point like sources of luminosity L Horizon T

$$N_{A} = \rho \ \delta\Omega \ T^{2}$$
$$N_{B} = \rho \ \delta\Omega \ R_{B}^{2}$$
$$\phi_{A} = \frac{L}{4\pi \langle E \rangle} \rho \ \delta\Omega \ \ln R_{A}$$
$$\phi_{A}^{\text{resolved}} = \frac{L}{4\pi \langle E \rangle} \rho \ \delta\Omega \ \ln T$$

$$T \Rightarrow L \Rightarrow L_{\rm tot}$$

Sensitivity of Extensive Air Shower gamma-ray Telescopes

Sensitivity determined by the $\delta \in [\delta_{\min}, \delta_{\max}]$

NADIR (point opposite zenith)

LHAASO 1st catalog

	All longitudes				
Telescope	N	N_A	N_B	N_A/N_B	
HAWC	63	49	14	3.5 ± 1.1	
LHAASO	86	66	20	3.3 ± 0.84	
LHAASO–WCDA	65	51	14	3.6 ± 1.1	
LHAASO-KM2A	75	58	17	3.4 ± 0.94	
LHAASO-High	44	36	8	4.5 ± 1.8	

		All	long	gitudes			$b \leq$	3°			b >	> 3°
Telescope	N	N_A	N_B	N_A/N_B	N	N_A	N_B	N_A/N_B	N	N_A	N_B	N_A/N_B
HAWC	63	49	14	3.5 ± 1.1	48	46	2	$23. \pm 17.$	15	3	12	0.25 ± 0.16
LHAASO	86	66	20	3.3 ± 0.84	70	61	9	6.8 ± 2.4	16	5	11	0.45 ± 0.25
LHAASO–WCDA	65	51	14	3.6 ± 1.1	55	49	6	8.2 ± 3.5	10	2	8	0.25 ± 0.2
LHAASO–KM2A	75	58	17	3.4 ± 0.94	62	54	8	6.8 ± 2.6	13	4	9	0.44 ± 0.27
LHAASO-High	44	36	8	4.5 ± 1.8	34	32	2	$16. \pm 12.$	10	4	6	0.67 ± 0.43

Model of the Spiral structure of the Galaxy

Horizon for

 $\begin{array}{lll} {\rm LHAASO} & \mbox{and} & {\rm HAWC} \\ \theta_{\rm max} = 50^\circ & & \theta_{\rm max} = 45^\circ \end{array}$

as function of celestial declination

Horizon along the Galactic disk (Latitude b=0)

as a function of Galactic longitude

Horizon for

 $\begin{array}{lll} {\rm LHAASO} & \mbox{and} & {\rm HAWC} \\ \theta_{\rm max} = 50^\circ & & \theta_{\rm max} = 45^\circ \end{array}$

as function of celestial declination

Horizon along the Galactic disk (Latitude b=0)

as a function of Galactic longitude This argument can be generalized for a more realistic luminosity distribution

Form used by several authors Power law distribution with a maximum luminosity cutoff [One motivation : "fading sources"]

$$\frac{dN_s}{dL} = \frac{L_{\text{tot}}}{\Gamma(2-\alpha) \ (L^*)^2} \ \left(\frac{L}{L^*}\right)^{-\alpha} \ \exp\left[-\left(\frac{L}{L^*}\right)\right]$$

 $\{L_{\text{tot}}, L^*, \alpha\}$

3 parameter model

- 1. Milky Way luminosity L_{tot}
- 2. Characteristic luminosity L^*
- 3. Exponent α

Number of faint sources diverges for

 $L \to 0$

Total luminosity (total flux) remain finite for

 $\alpha < 2$

Important result for a power law luminosity distribution;

Identical sources

$$1 \le \frac{N_A}{N_B} \le \frac{R_A^2}{R_B^2} = \frac{N_A^{\text{tot}}}{N_B^{\text{tot}}}$$

Power Law luminosity distribution (low luminosity cutoff negligible)

Effect of increase in number of near intrinsically faint sources

$$1 \le \frac{N_A}{N_B} \le \left(\frac{N_A^{\text{tot}}}{N_B^{\text{tot}}}\right)^{2-\alpha}$$

Diffuse gamma-ray flux measurements at high energy

$E \in [1, 10] \text{ TeV}$	
$\langle \phi \rangle_{\rm diff} ~({\rm cm}^2~{\rm s~sr})^{-1}$	$(5.23^{+0.7}_{-0.8}) \times 10^{-10}$
$\langle \phi \rangle_{\rm sources}^{\rm resolved} \ ({\rm cm}^2 \ {\rm s \ sr})^{-1}$	2.67×10^{-10}
$\langle \phi angle_{ m sources}^{ m resolved}$ / $\langle \phi angle_{ m diff}$	$0.51\substack{+0.092 \\ -0.06}$
$L_{\rm min}^{\rm sources} [{\rm erg/s}]$	$3.33 imes 10^{36}$
$L_{\rm max}^{\rm sources} \ [{\rm erg/s}]$	1.02×10^{37}

$E \in [10, 10^2]$ TeV	
$\langle \phi \rangle_{\rm diff} ~({\rm cm}^2~{\rm s~sr})^{-1}$	$(1.31^{+0.18}_{-0.15}) \times 10^{-11}$
$\langle \phi \rangle_{\rm sources}^{\rm resolved} \ ({\rm cm}^2 \ {\rm s \ sr})^{-1}$	5.18×10^{-12}
$\langle \phi angle_{ m sources}^{ m resolved}$ / $\langle \phi angle_{ m diff}$	$0.394\substack{+0.052\\-0.047}$
$L_{\rm min}^{\rm sources} [{\rm erg/s}]$	$6.73 imes 10^{35}$
$L_{\rm max}^{\rm sources} \ [{\rm erg/s}]$	$2.4 imes 10^{36}$

	HAWC	LHAASO Inner Galaxy	LHAASO (Outer Galaxy)
	$ b < 4^\circ, 43^\circ \le \ell \le 73^\circ$	$ b < 5^{\circ}, 15^{\circ} \le \ell \le 125^{\circ}$	$ b < 5^{\circ}, 125^{\circ} \le \ell \le 235^{\circ}$
\mathcal{N}	0.0871	0.330	0.0309
$[\langle d_{\rm s}^{-2} \rangle]^{-\frac{1}{2}}$ (kpc)	6.31	6.34	3.13
$E \in [1, 10] \text{ TeV}$			
$\langle \phi \rangle_{\rm diff} ~({\rm cm}^2~{\rm s~sr})^{-1}$	$(5.23^{+0.7}_{-0.8}) \times 10^{-10}$	—	
$\langle \phi \rangle_{\rm sources}^{\rm resolved} \ ({\rm cm}^2 \ {\rm s} \ {\rm sr})^{-1}$	2.67×10^{-10}	· · · · · · · · · · · · · · · · · · ·	<u></u>
$\langle \phi angle_{ m sources}^{ m resolved}$ / $\langle \phi angle_{ m diff}$	$0.51\substack{+0.092\\-0.06}$		
$L_{\rm min}^{\rm sources} [{\rm erg/s}]$	$3.33 imes10^{36}$		
$L_{\rm max}^{\rm sources} \ [{\rm erg/s}]$	1.02×10^{37}		
$E \in [10, 10^2] \text{ TeV}$			
$\langle \phi \rangle_{\rm diff} ~({\rm cm}^2~{\rm s~sr})^{-1}$	$(1.31^{+0.18}_{-0.15}) \times 10^{-11}$	$(6.12^{+1.3}_{-1.1}) \times 10^{-12}$	$(2.69^{+0.94}_{-0.73}) \times 10^{-12}$
$\langle \phi \rangle_{\rm sources}^{\rm resolved} \ ({\rm cm}^2 \ {\rm s} \ {\rm sr})^{-1}$	5.18×10^{-12}	1.63×10^{-11}	1.93×10^{-12}
$\langle \phi angle_{ m sources}^{ m resolved}$ / $\langle \phi angle_{ m diff}$	$0.394\substack{+0.052\\-0.047}$	$2.67^{+0.58}_{-0.46}$	$0.718\substack{+0.27\\-0.19}$
$L_{\rm min}^{\rm sources} [{\rm erg/s}]$	$6.73 imes 10^{35}$	2.49×10^{36}	$8. imes 10^{35}$
$L_{\rm max}^{\rm sources} \ [{\rm erg/s}]$	2.4×10^{36}	$3.37 imes 10^{36}$	$1.8 imes 10^{36}$
$E \in [10^2, 10^3]$ TeV			
$\langle \phi \rangle_{\rm diff} ~({\rm cm}^2~{\rm s~sr})^{-1}$	—	$(6.26^{+1.3}_{-1.1}) \times 10^{-14}$	$(2.75^{+0.97}_{-0.75}) \times 10^{-14}$
$\langle \phi \rangle_{\rm sources}^{\rm resolved} \ ({\rm cm}^2 \ {\rm s} \ {\rm sr})^{-1}$	_	1.46×10^{-13}	1.3×10^{-14}
$\langle \phi angle_{ m sources}^{ m resolved}$ / $\langle \phi angle_{ m diff}$	—	$2.34^{+0.51}_{-0.4}$	$0.471\substack{+0.18 \\ -0.12}$
$L_{\min^{sources}} [erg/s]$	_	$1.96 imes 10^{35}$	4.33×10^{34}
$L_{\rm max}^{\rm sources} \ [{\rm erg/s}]$	_	2.86×10^{35}	1.46×10^{35}

N_{inner} / N_{outer}

Conclusions [part 1]

1. The cumulative spectrum of all Galactic sources undergoes a significant softening above 10~TeV.

```
E \simeq 20 \div 80 \text{ TeV} spectral index :
\Gamma \sim 2.6 \rightarrow 3.4
```

The spectral shape is quite similar to the shape of the diffuse – interstellar flux [intriguing ?] and makes a separation difficult.

2. Most (or all) spectra in the energy range 1-100 TeV show significant curvature.

 The spectra of individual sources have a broad range of shapes with a cumulative spectrum that is much smoother.

Conclusions [part 2]

4. The unresolved sources gamma-ray flux can be estimated extrapolating from the observed objects.

The "geometrical" method of studying the number of sources in different angular regions is very promising.

- 5. Understanding the space distribution of the sources (and the spiral structure of the Milky Way) is however important.
- 6. The separation of the "unresolved flux" and the "diffuse interstellar flux" remains a difficult problem, because they are of (approximately) the same order.
 [More detailed discussion in preparation]