

Plasma Physics of Accretion Flows

Dmitri Uzdensky (Univ. Colorado Boulder)

Thanks to: G.Werner, M.Begelman, J.Dexter, N.Scepi, A.Chen, J.Mehlhaff, O.French

Supported by NSF, NASA

CDY Workshop on Black Hole Flares, Flatiron Inst., New York, November 13, 2023

D. Uzdensky

1

OUTLINE

- Complexity and Diversity of Extreme Plasma Environments of Accreting Black Holes
- Focus of Flares --- Magnetic Reconnection:
 - Electron-Ion Heating Ratio
 - Nonthermal Particle Acceleration
- (Energy Scales in Radiative Relativistic Reconnection)
- (Sgr A* NIR/X-ray Flares)
- Conclusions

Structure of Accreting BH Systems

- Accreting BH system is a complex <u>magnetized plasma</u> <u>machine</u> with interacting moving <u>parts</u>:
 - Accretion disk/ RIAF
 - Corona/ Disk Wind
 - Magnetosphere
 - Jet
- Morphological structure governed by key geometrical surfaces, large-scale magnetic field topology, and key plasma parameters (e.g., plasma β).
- Different accretion & spectral states:
 - Standard (SS73) thin Disk + Corona
 - SANE RIAF
 - MAD RIAF

Components ...

Each part of accreting BH system is a complex plasma environment consisting of several *Components*...

4

... and Processes

Energy exchange between plasma components: plasma-physical processes.

Flares: Rapid Energy-Release Events Powered by Dissipation Processes

Complex nonlinear plasma processes excited by linear instabilities. Nonlinearly, they lead to turbulence.

• Challenge to Plasma Astrophysics: understand how these processes work under extreme physical conditions of BH environments. 11/13/2023

Traditional & Extreme Plasma Physics

Traditional Plasmas

- Electrons and ions
- Non-relativistic
- Non-radiating

Extreme Plasmas

<u>"Exotic"</u> Physics:

- e⁻e⁺ pairs (+ ions), photons
- Relativistic (Special & General)
- Radiation (cooling, drag, pressure)
- QED effects (e.g., pair creation)

Applications:

- Most lab plasmas

- Solar corona

- Earth's magnetosphere

Based on 19th Century Physics!

D. Uzdensky

Applications:

Neutron Stars (NSs) & Black Holes (BH):

- Magnetospheres of pulsars, magnetars
- BH accretion disks, coronae, jets
- Cosmic blasts (SNe, GRB)
- NS-NS mergers
- Early Universe

and soon...

- Laser-plasma lab experiments!

Based on 20th Century Physics! 11/13/2023

Diversity of Plasma-Physical Regimes in BH Accretion Flows

• Composition:

- Electron-ion (ei): SS73 disk, RIAF, corona
- *e*⁺*e*⁻ pairs: jet, magnetosphere
- Mixed (*ei* + pairs): corona
- **<u>Plasma beta:</u>** $\beta = P_{pl} / P_{magn} = 8\pi P_{pl} / B^2$
 - High $\beta \simeq 10-10^3$: SS73 disk, RIAF (MRI-active)
 - Low $\beta \ll 1$: corona, jet, magnetosphere
- **Collisionality:** (binary Coulomb collisions)
 - Collisionless: $\tau_{\rm dyn} \ll \tau_{ee} \ll \tau_{ie}$
 - Semi-collisional: $\tau_{ee} \ll \tau_{dyn} \ll \tau_{ie}$
 - Collisional: $\tau_{ee} \ll \tau_{ie} \ll \tau_{dyn}$
- <u>Relativity:</u>
 - Non-relativistic: v << c
 - Trans-relativistic: v ~ c
 - Ultra-relativistic: $v \approx c, \gamma \gg 1$
- <u>Radiation:....</u>

But relativistic WHAT?

- electrons or ions?
 <u>Semirelativistic</u> regime: ultra-relativistic ens but sub-relativistic ions
- bulk flow or thermal speed?
 Relativistically hot plasma vs. relativistic process

<u>Macro- and Micro-scales, Plasma Descriptions,</u> and Computational Approaches

• **MHD dynamics**: global system size *L* (macroscopic):

- $L \sim R_g$ for BHs; disk scale-height for thin-disk MRI studies.
- Computational approach: global 2D/3D GRMHD and local shearing-box MHD sims.
- 1024³ grid sims can reach down down to 10⁻³*L* (smaller with AMR) --- formally still macroscopic!
- Advantages: large-scale system dynamics and structure.
- Disadvantages: no electron-ion heating ratio, nonthermal particle acceleration, radiation.

• <u>Kinetic Physics</u>: kinetic plasma scales *ℓ* (microscopic):

- $\ell \sim \lambda_D$, $d_{i,e}$, $\rho_{i,e}$ local scales, governed by local plasma conditions (n,T,B), independent of L.
- Related via dimensionless ratios: β , $\theta = T/mc^2$, m_i/m_e , Mach #, σ , (richness of kinetic plasma physics!)
- Computational approach: 2D/3D particle-in-cell (PIC) sims
- PIC sims have to resolve λ_D , can reach system sizes of 10³ λ_D --- formally still microscopic << L.
- Advantages: can determine electron-ion heating ratio, nonthermal particle acceleration, radiation.
- Disadvantages: local PIC sims need to be connected to large-scale MHD (e.g., via mesoscopic boxes); global PIC sims have small scale separation $L/\ell \sim 100-1000$.

Relativistic Magnetic Reconnection

Introduction: Magnetic Reconnection

- Magnetic reconnection is a rapid rearrangement of magnetic field topology, breaking ideal-MHD.
- Reconnection results in a violent release of magnetic energy and its conversion to:
 - electron and ion heating
 - bulk flow kinetic energy
 - non-thermal particle acceleration
 - radiation

Reconnection in Accreting Black Hole Environments (Disks/RIAFs/Magnetospheres/Coronae/Jets)

Black-hole accretion disks, flows, coronae, magnetospheres are highly dynamic, complex magnetized plasma environments, so reconnection is generally expected.

 $r/r_{\rm g}$

• E.g.: *Equatorial current sheet* in MAD plunging region/ergosphere: ^β

(image: Kimura+ '22)

(McKinney+ '12, Chatterjee+ '21, Dexter+ '21)

Global resistive GRMHD sims (Ripperda+ '22)

Global rad. GR-PIC sims (Parfrey+'19, Cringuand+'20)

• E.g.: Accretion Disk Corona (ADC): sandwich model; analogy with solar corona

(Liang & Price 1977; Galeev, Rosner, & Vaiana 1979)

Electron-Ion Heating Ratio Q_e/Q_i in Magnetic Reconnection in Collisionless Semi-Relativistic Electron-Ion Plasmas (2D & 3D PIC Simulations)

Ions dominate dynamics and energetics, but electrons produce all the light we see! Determining electron heating fraction is thus critical for connecting theoretical/numerical (GRMHD) models of BH accretion flows to observations.

[Werner et al. 2018 (2D); Werner & Uzdensky 2023 (3D)

See also in 2D: Melzani et al. 2024, Rowan et al. 2017, Sridhar et al. 2023]

Semi-Relativistic *e-i* Reconnection: 2D PIC Sims, B_g=0

Werner et al. 2018

Energy partitioning between electrons and ions

Nonthermal Particle Acceleration:

<u>Electron power-law index *p* and cutoff γ_c:</u>

(Werner et al. 2018; c.f. Ball et al. 2018)

3 times more energy than electrons.

(Werner et al. 2018; c.f. Rowan et al. 2017, 2019)

New! Semi-Relativistic e-i Reconnection: 3D PIC Sims

Werner & Uzdensky 2023 (in prep)

Current sheets in semirelativistic plasma suffer multiple competing instabilities

- magnetic reconnection (tearing, coalescence) -- can be studied in 2D
- drift kink instability (DKI) can be studied in 2D
- flux rope kink instability (MHD kink) requires 3D

New! Semi-Relativistic e-i Reconnection: 3D PIC Sims

Werner & Uzdensky 2023 (in prep)

<u>Summary</u>

- Accreting Black Holes are a great natural laboratory (aka a theorist's playground) for studying extreme plasma physics.
- Great variety of physical regimes, but all on a well-defined underlying BH metric.
- Numerical GRMHD models are an excellent tool to explore overall fluid dynamics and magnetic field structure.
- But connecting these models to observations (EM radiation) requires kinetic plasma physics (beyond MHD): electron heating fraction Q_e, NTPA.
- (radiative) PIC simulations probe this physics from first principles, yielding prescriptions for Q_e , p_e , etc.

