

Radiation from magnetized plasmas

Joonas Nättilä

Relativistic magnetically-dominated plasmas

$$\sigma \equiv \frac{U_B}{U_{\pm}} = \frac{B^2}{4\pi n_{\pm} m_e c^2} \gtrsim 1$$

Magnetically dominated

 $v_{\rm A} \equiv c \sqrt{\frac{\overline{\sigma}}{\sigma + 1}} \to c$

Relativistic Alfven motions

Radiative plasma physics

System size via optical depth

 $\tau = \sigma_{\rm T} n_{\pm} H$

Compactness (or dimensionless luminosity)

$$\ell \equiv \frac{L\sigma_{\rm T}}{m_e c^3 H} \sim 10^4 \, L_{40} \, H_7^{-1}$$

$\ell \sim 0.1$ $\ell \sim 10$ Nättilä & Beloborodov 2021 ApJ

First-principles simulations of radiative plasmas Monte-Carlo Particle-in-cell method radiation/QED reactions (in situ)

Photon annihilation

Compton scattering

Pair annihilation

Adaptive Monte-Carlo scheme with automatic energydependent particle-weight splitting & merging

runko

open-source simulation toolkit

Nättilä 2022 A&A; https://github.com/natj/runko

Technological features:

- CPU/GPU portable 3D particle-in-cell code
- Modern C++17/Python3 high-performance code
- Full 3-level parallelization (w/ SIMD/openMP/MPI)
- **Open source** (incl. problem setups, analysis scripts, etc.)

Robust QED processes with adaptive Monte Carlo

Robust cyclo-synchrotron with hybrid Fokker-MC

Cyclo-synchrotron emissivity

cyclo-synchrotron self-absorption

Photon supply in magnetized plasmas

Hard-state spectra from Cyg X-1

Hard state (obs 1)Ginga-OSSE1991 Jun 6 (Gierlinski+ 1997) + CGRO/COMPTEL (McConnel+ 2002)Hard state (obs 2)BeppoSAX May 3–4 1998 (Di Salvo+ 2001)Intermediate stateRXTE May 23 1996 (Gierlinski+1999)

Reality check: Solar magnetosphere

Video: Sean Doran SDO in EUV band 2-day timelapse

X-ray output from a magnetic flare

Small magnetized turbulent region characterized with

$$H \sim r_g \sim 30 \text{ km}$$

 $t_g \sim \frac{H}{c} \sim 100 \text{ ms}$
 $B \sim 10^7 \text{ G}$

locally injected power from magnetic perturbations

$$L_{\text{flare}} \approx \dot{U}_B H^3 \approx \frac{U_B}{t_g} H^3 \sim 10^{36} \,\text{erg s}^{-1}$$
$$\ell \equiv \frac{L_{\text{flare}}}{m_e c^2} \frac{\sigma_T}{Hc} \sim 10 \qquad \text{compactness}$$

Multiple flares in corona

locally injected power per flare region of size $H \sim r_g \approx 30 \, {\rm km}$

$$L_{\text{flare}} \approx \dot{U}_B H^3 \approx \frac{U_B}{H/c} H^3 \sim 10^{36} \,\text{erg s}^{-1}$$

total luminosity from corona with a size $H_{\rm corona} \sim a$ few r_g

$$L = \sum L_{\text{flare}} \sim L_{\text{flare}} \frac{H_{\text{corona}}^3}{H^3} \sim 10 L_{\text{flare}} \sim 10^{37} \,\text{erg s}^{-1}$$

First-principles simulations of photon-plasmas

electron-positron-photon plasma

in a box 1024^3 with $\Delta x = 1 c/\omega_p$

turbulence is driven on large-scales by Langevin antenna: background field \mathbf{B}_{bg} perturbed with $\langle \delta B \rangle \sim B_{\mathrm{bg}}$ antenna power $\ell_{\mathrm{ant}} \approx 20$

Intermittent current sheets

Comisso & Sironi Zhdankin et al 2D magneticallydominated plasma resolution 64 000²

Self-consistent plasma magnetization via pair-creation

 e^\pm density is self-consistently set at $\sigma\sim 3$ for $\ell\sim 20$

Efficient cooling increases density contrast $(t_{\rm cool} \sim 0.1 t_{\rm eddy})$

Turbulent bulk Comptonization

 $\tau_{\rm T}$

 $\label{eq:comptonization} \begin{array}{l} \mbox{Comptonization occurs in "plasma pockets" with subrelativistic Alfvenic bulk motions $\Gamma_{bulk} \sim 1-3$. \\ \mbox{See also Groselj et al. 2023} \end{array}$

Optically thin regions $\tau \ll 1$ have $\delta B/B \sim 1$ (weak guide field) Optically thick regions $\tau \sim 10$ have $\delta B/B \ll 1$ (strong guide field)

Escaping radiation for Cyg X-1 hard state

Conclusions

First-principles radiative plasma simulations are here!

in-situ Comptonization generates realistic spectra

in-situ pair-production sets plasma magnetization σ

Simulations can reproduce XRB Cyg X-1 hard state

