High-Energy Neutrinos from Supermassive Black Holes

Kohta Murase (PSU/YITP) November 15 2023 CDY Workshop

High-Energy Neutrino Sky

consistent w. isotropic distribution/extragalactic origins #Galactic contribution: ~10% (IceCube 23 Science)

Where do neutrinos mainly come from?

High-Energy Neutrino Production Processes

Cosmic-ray Accelerators

 $p + \gamma \rightarrow N\pi + X$

Cosmic-ray Reservoirs

Starburst galaxy

Galaxy cluster

Galaxy cluster

 $p + p \rightarrow N\pi + X$

 $\pi^{\pm} \rightarrow \nu_{\mu} + \bar{\nu}_{\mu} + \nu_e \text{ (or } \bar{\nu}_e) + e^{\pm}$

Updated All-Sky Neutrino Flux & Spectrum

Extragalactic Gamma-Ray Sky: Dominated by Jetted AGN

Extragalactic Gamma-Ray Sky: Dominated by Jetted AGN

Can Blazars be the Origin of IceCube Neutrinos?

γ -ray bright blazars are largely resolved -> stacking analyses are powerful

Blazars are subdominant in all parameter space (most likely <~ 30%) Similar conclusion from neutrino anisotropy limits (KM & Waxman 16 PRD)

General Implications of All-Sky v and v Fluxes

10-100 TeV shower data: large fluxes of ~10⁻⁷ GeV cm⁻² s⁻¹ sr⁻¹

Fermi diffuse γ -ray bkg. is violated (>3 σ) if ν sources are γ -ray transparent

→ Requiring hidden (i.e., γ -ray opaque) cosmic-ray accelerators (v data above 100 TeV can still be explained by γ -ray transparent sources)

General Implications of All-Sky v and v Fluxes

10-100 TeV shower data: large fluxes of ~10⁻⁷ GeV cm⁻² s⁻¹ sr⁻¹

Fermi diffuse γ -ray bkg. is violated (>3 σ) if ν sources are γ -ray transparent

→ Requiring hidden (i.e., γ -ray opaque) cosmic-ray accelerators (v data above 100 TeV can still be explained by γ -ray transparent sources)

Opacity Argument

Hidden (i.e., γ -ray opaque) v sources are actually "natural" in p γ scenarios

$$_{
m p\gamma
ightarrow e^+e^-}$$
optical depth $au_{\gamma\gamma} pprox rac{\sigma_{\gamma\gamma}^{
m eff}}{\sigma_{p\gamma}^{
m eff}} f_{p\gamma} \sim 1000 f_{p\gamma} \gtrsim 10$

implying that >TeV-PeV γ rays are cascaded down to GeV or lower energies

Prediction of Hidden Neutrino Sources

Hidden (i.e., γ -ray opaque) v sources are actually "natural" in p γ scenarios

 $\gamma\gamma \rightarrow e^+e^$ optical depth $\tau_{\gamma\gamma} \approx \frac{\sigma_{\gamma\gamma}^{\text{eff}}}{\sigma_{p\gamma}^{\text{eff}}} f_{p\gamma} \sim 1000 f_{p\gamma} \gtrsim 10$ KM. Kimura & Meszaros 20 PRL

accretion disk + "corona" opt/UV=multi-temperature blackbody X-ray=Compton by thermal electrons

All-sky 10-100 TeV neutrino flux can be explained by AGN But do such hidden v source (candidates) exist??

NEUTRINO ASTROPHYSICSEvidence for neutrino emission from the nearbyactive galaxy NGC 1068Science

JOURNALS MAAAS

IceCube Collaboration*†

ASTRONOMY

Neutrinos unveil hidden galactic activities By Kohta Murase¹²³

An obscured supermassive black hole may be producing high-energy cosmic neutrinos

Obscured AGN as a Hidden Neutrino Source

Obscured AGN as a Hidden Neutrino Source

 $L_v \sim 3x10^{42}$ erg/s << $L_{bol} \sim 10^{45}$ erg/s < $L_{Edd} \sim 3x10^{45}$ erg/s: reasonable energetics

Where Do Neutrinos Come from?

compatible w. proton calorimetry condition (p γ optical depth f_{p γ}>~1)

Particle Acceleration Sites?

magnetically-powered corona

(KM+ 20, Kheirandish, KM & Kimura 21)

- turbulence/shear
- magnetic reconnection

Jiang, Blaes, Stone & Davis 19 see also Miller & Stone 00, Liska+ 22

(S. Inoue, Cerruti, KM+ 23, Y. Inoue+ 20)

Neutrinos Can Constrain Cosmic-Ray Spectra

- $E^{-3.2}$ spectrum cannot be extended to GeV energies (see also KM 22 ApJL)
- ε_ν^{max} < 20-30 TeV (ε_p^{max} < 100 TeV) for E⁻² spectrum
 # not necessarily power laws to fit the IceCube data

Particle Acceleration: Fast or Slow?

 $p\gamma \rightarrow pe^+e^-$ (Bethe-Heitler process) is typically important for 1-10 TeV vs

Particle Acceleration in Turbulence is Seen in Simulations

Particle Acceleration in Turbulence is Seen in Simulations

Bulk may be turbulent acceleration. But how much is the volume filling factor β f regions with σ >100?

More Hints & More Tests (Neutrinos)

- 2.7 σ excess of vs from two nearby AGN including NGC 4151 (IceCube 23 ICRC)
- 2.6 σ with 8 yr upgoing v_{μ} events and IR-selected AGN (IceCube 22 PRD)

testable w. near-future data or by next-generation neutrino detectors

Gamma Rays Are Not Gone: MeV y-ray Tests

- Prediction: CR-induced cascade γ rays should appear in the MeV range
- We found a sub-GeV "excess" over the $\pi^0 \rightarrow 2\gamma$ (starburst) component

Applications to Low-Luminosity AGNs

Detectability of Nearby Low-Luminosity AGN

Kimura, KM & Meszaros 21 Nature Comm.

- Detection of MeV γ due to thermal electrons is promising (CR-induced cascade γ rays are difficult to observe)
- Nearby LL AGN can be seen by IceCube-Gen2/KM3Net

High-Energy Multimessenger Transients

1. A. commune

.....

....

A TANK TANK TANK

0 01-00-00

Flares from Supermassive Black Hole Jets?

Updated in Analysis on 2014-2015 Neutrino Flare

IceCube 23 ICRC

Sample	<i>p</i> (pre-trial)	Best-Fit Flux ($\times 10^{-15}$ TeV ⁻¹ cm ⁻² s ⁻¹)	γ	T _{start} (MJD)	T _{stop} (MJD)
Point Source Tracks v2	7e-5	1.6	2.2	56937.81	57096.22
Northern Tracks v5	1e-3	0.76	2.2	56927.86	57091.33

"Power" of Multimessenger Approaches

 $\mathbf{p}\gamma \rightarrow \mathbf{v}, \gamma + \mathbf{e}$

electromagnetic energy must appear at keV-MeV

Puzzling: standard single-zone models do NOT give a concordance picture

More Coincidences w. Blazars

More follow-up campaigns and/or larger statistics in v data are necessary But the situation is still puzzling... IceCube-200107A

promising but no coincidence w. γ -ray flaring, unseen in v point-source search - 3HSP J095507.9+355101: extreme BL Lac

coincidence w. X-ray flaring but the alert rate is at most ~1-3% in 10 years - PKS 0735+178: TXS 0506+056-like coincidence w. X-ray & γ-ray flares (Sahakyan+ 22)

Flares May Still Matter in Neutrinos

 $L_
u \propto L_\gamma^{\gamma_{
m lw}}$ ($\gamma_{
m lw}$ ~1.5-2)

flare distribution

$$\frac{dN_{\rm fl}}{dL_{\gamma}} \propto L_{\gamma}^{-\alpha}$$
$$\bar{L}_{\nu} \propto L_{\nu}^{2} \frac{dN_{\rm fl}}{dL_{\nu}} \propto L_{\nu}^{1-\frac{\alpha-1}{\gamma_{\rm lw}}}$$

index is often **positive**

neutrino emission may be dominated by flare phases

Yoshida, Petropoulou, KM & Oikonomou 22 ApJ see also KM, Oikonomou & Petropoulou 18 ApJ

PKS 0235+164

Coincidences w. Long-Duration "Optical" Transients

Tidal disruption events (TDEs):

flares from supermassive black holes through the disruption of a star

Stein+ 21 Nature Astron.

Reusch+ KM 21 PRL

- 5 optical candidates reported (van Velzen+ 23, Jiang+ 23)
- All are rare optical transients w. strong infrared echoes
- Possible neutrino time delays w. ~150-300 day

Neutrinos from Tidal Disruption Events?

Supermassive black holes as hidden particle accelerators Multimessenger interpretations?

TDE "possible but…"

Jetted AGN "challenging"

Summary

 Multi-messenger analyses w. 10 TeV v data hidden CR accelerators

Jet-quiet AGNs - all-sky vs could be explained

- NGC 1068: evidence for a hidden neutrino source
- Emission radius: $R<30-100 R_S \rightarrow$ collisionless coronae?
- Sub-GeV γ-ray excess? (MeV: AMEGO-X, e-ASTROGAM) More in south (KM3Net/Baikal-GVD), IceCube-Gen2
- Understanding non-thermal phenomena in coronae

SMBH flares – blazar flares, TDEs

- TXS 0506+056 & other coincidences: no concordance
- Neutrinos could be predominantly during flares
- TDE and AGN vs could originate from common mechanisms
- Need more data: strategic searches, multiplet follow-up etc.