X-ray Spectroscopy of Luminous Black Holes

Andy Fabian, Institute of Astronomy, Cambridge, UK

Accretion disc

Lamppost model

Accretion disc

Reflection from cold matter of cosmic abundance

C Reynolds

H Moseley

Reflection from ionized gas Ross+Fabian93,05; Garcia+13

Ionization Parameter $\xi = L/nr^2$

Probing Black Hole Spin

No spin

SPIN from Innermost Stable Circular Orbit (ISCO)

Miller+Miller15

Soft excess – broad iron line – Compton hump

Observer sees blurred reflection spectrum + irradiating power-law (horizontal line in this plot if photon index=2) Ratio of components depends on geometry, GR, SR (if corona outflowing)

Parker, Matt+

Reflection in AGN with NuSTAR

Spectra show ratio of data to model power-law

Sometimes most emission from within 2r_g

Mkn 335 Parker+14

Reflection-dominated spectrum

Parker, Tomsick+, JMiller+13,15 and Galactic sources too

Walton+16 V404 Cyg Flare NuSTAR

Thermal model relies on blackbody emission from disc in soft state

	◆ Reflection (pre-NuSTAR)	A Thermal	NuSTAR
4U1630-472			·····•
V404Cyg			····· C
GS1354-645			····· C
GRS1915+105			····· /
GX339-4			
CygnusX-1			
LMCX-1			·····
MAXIJ1836-194			•••••••
GROJ1655-40			····· ··· ··· ·· · • · · · · · •
MAXIJ1535-571			
M33X-7			·····
GRS1739-278			······
XTEJ1650-500			••••••
SwiftJ1753.5-0127			·····
XTEJ1908+094			·····
SAXJ1711.6-3608		·····	
4U1543-475		\$	·····
XTEJ1752-223			·
XTEJ1652-453			
XTEJ1550-564			
LMCX-3		···· 	
A0620-00		· <u> </u>	
M31ULX-2	↓		
GS1124-683	·····		
Swift,J1910.2-0546	••		
-	1.0 -0.5	0.0	0.5 1.0
		\mathbf{a}_*	

Т

Т

Т

Т

-

Tomsick19

Vasudevan+16, Reynolds20

Soltan (1982) Argument for radiatively efficient accretion <a> >0.5

- The radiation from accreting black holes leads to an energy density in space of \mathcal{E}_{acc} , and a growth in the mean density of black holes of $\frac{\epsilon}{(1-\epsilon)}\rho_{BH}c^2$, where ϵ is the radiative efficiency of the accretion flow.
- With time the Universe expands leading to the same relative drop in density of both factors. However the radiation suffers a loss due to redshift, leading at the present time to

$$\mathcal{E}_{
m acc}(1+z) = rac{\epsilon}{(1-\epsilon)}
ho_{
m BH} c^2,$$

where z is the mean redshift at which the accretion occurs.

- \mathcal{E}_{acc} can be measured from the summed spectra of AGN and ρ_{BH} can be estimated from the mass function of galaxies together with the $M_{BH} M_{gal}$ relation.
- Results show agreement if $\epsilon \sim 0.1$, indicating that most black holes have a spin of $a \sim 0.5$ and that massive black holes have grown by accretion.

1H0707-495

Gallo+04

Path difference leads to Reverberation (Time lags) So far all lengthscales are in units of r_g (=GM/c²), i.e. depend on BH mass.

Time lags give lengths in cm.

Observations of Reverberation complicated since see both Direct and Reflection components together

Separate spectrally (contributions vary with energy)

Need Spectral Timing

Fabian+09 X-ray Reverberation

1H0707-495 Fabian+09 TIME LAGS between 0.5-1 and 1-3 keV

3-4 keV vs 5-7 keV

Kara+16

IRAS13224-3809 – MOST VARIABLE AGN IN X-RAYS XMM + NuSTAR PROGRAMME 1.5Ms

What is the Corona?

How to constrain geometry of corona

- Variability
- Reflection
- Reverberation
- Emissivity profiles
- Gravitational microlensing
- Occultations
- Soltan argument

 Brightest parts of the Universe immediately next to the darkest parts

Microlensing confirms that Corona is compact

Galaxy

Source

Chartas+

Microlensing Star

View from Chandra

Chandra

В

Coronal properties

- 15<kT<150 keV, most 50-100 keV
- R<10 r_g for much of the power
- Some could be outflowing (Beloborodov99, Malzac+01, Wilkins+14)
- Probably not static!
- Lowest part of corona dominates reflection, outflowing upper part dominates observed powerlaw

WHAT DETERMINES CORONAL TEMPERATURE?

PAIR PRODUCTION: electron-positron pairs form when photons and/or particles collide at energies $> m_e c^2 = 511 keV$

From **particle-particle** interaction in a relativistic thermal gas: energy injected goes into the rest mass of new particles (not in kinematics) \rightarrow limit the temperature at about $\sim 10 MeV$. Pair production outweighs annihilation above that temperature .

From photon-photon collisions: $\gamma + \gamma \rightarrow e^{\pm}$ requires $\frac{\epsilon_1}{m_e c^2} \frac{\epsilon_2}{m_e c^2} > 2$

(the ϵ 's are the energies of the photons involved) \rightarrow between two MeV photons or a TeV photon and a infrared photon.

Figure 1: Cross-section for $\gamma\gamma$ -pair production in units of the Thomson cross-section σ_T as a function of interacting photon energies (ϵ_1/m_ec^2) (ϵ_2/m_ec^2) $(1-\cos\theta)$. The cross-section rises sharply above the threshold $\epsilon_1\epsilon_2(1-\cos\theta) = 2m_e^2c^4$ and has a peak of $\simeq \sigma_T/4$ at roughly twice this value, i.e. at $\epsilon_1\epsilon_2(1-\cos\theta) = 4m_e^2c^4$.

Compactness Parameter and Pair Production

Consider a spherical source of MeV photons of radius R and luminosity L. The photon density

$$n_{\gamma} = \frac{L}{4\pi R^2 c 2m_e c^2}$$

$$\tau_{\gamma\gamma} = n_{\gamma} \frac{\sigma_T}{5} R$$

$$= \frac{L}{4\pi R 2m_e c^3} \frac{\sigma_T}{5}$$

$$= \frac{\ell}{40\pi}$$

where $\ell = \frac{L}{R} \frac{\sigma_T}{m_e c^3}$

 ℓ is the dimensionless Compactness Parameter (Guilbert, Fabian & Rees 1983). Most photons will not escape from the source when $\ell > 100$. If heated, pairs will create and scatter photons leading in a non-linear way to a ball of plasma. Consider spherical source size R, scattering optical depth τ in which luminosity L is generated:

$$\varepsilon = \frac{L}{4\pi R^2 c} (1+\tau)$$

thus

$$t_C = \frac{3\pi R}{2c\ell(1+\tau)}$$

Compton cooling

time

where

$$\ell = \frac{L}{R} \frac{\sigma_T}{m_e c^3}.$$

 ℓ is the **compactness parameter** of the source. Measures probability of photons and electrons interacting in the source.

$$\frac{t_C}{t_{cross}} = \frac{3\pi}{2\ell(1+\tau)}$$

 t_{cross} is the light crossing time of the source. If $\ell > 2$ then $t_C < t_{cross}$.

CORONAL HEATING

Merloni&Fabian-01)

Consider a spherical corona of radius R, luminosity L, Thomson depth τ and temperature T. Its thermal energy $E_{\text{th}} \approx \pi R^3 nkT$ and since $\tau \sim n\sigma_{\text{T}}R$ then $E_{\text{th}} \approx \frac{\pi R^2 kT \tau}{\sigma_{\text{T}}}$.

In order that the corona remains hot we need that the heating time $t_{heat} = E_{th}/L$ exceeds the light crossing time of the corona, $t_{cross} = R/c$.

Thus

Solution is for the corona to be a small number of magnetically-dominated regions (Merloni & Fabian01).

The heating problem is also present in most "warm coronae".

Coronae are magnetically-dominated

Major papers on pair production in compact hot plasmas by Svensson 82,84, Zdziarski 84 and many others in the 80s and 90s.

Concept of Pair Thermostat introduced

CORONAL PHYSICS

Compactness

NuSTAR results

8

Effect of addition of nonthermal particles - Hybrid Plasma

Uses BELM, similar results for EQPAIR

Fabian, Lohfink, Belmont, Malzac, Coppi 2017

A. Tortosa et al. 2022

E. Bertola et al.: The properties of the X-ray corona in the distant (z = 3.91) quasar APM 08279+5255

Zdziarski et al. 2021

Pair Annihilation and 511 keV line

Purely thermal pair plasmas don't show distinct lines but hybrid plasmas can (see discussion in Zdziarski+21). Luminous coronae are superEddington for pairs, which can create pair wind with v~0.5c (rad. pressure vs Compton drag: Beloborodov99).

What does the Heating? Magnetic Reconnection? See recent discussions by Beloborov18, Sironi+B..20

THE ASTROPHYSICAL JOURNAL, 850:141 (11pp), 2017 December 1

Beloborodov

Figure 1. Schematic picture of the reconnection layer. Opposite magnetic fluxes converge toward the midplane of the layer with velocity $v_{rec} \sim 0.1c$. The reconnected magnetic field forms closed islands (plasmoids), which move horizontally with various relativistic speeds. Their Lorentz factors γ reach $\sigma^{1/2}$, where σ is the magnetization parameter defined in Equation (2). The Lorentz factors are controlled by radiative losses and related to the plasmoid size *w* as discussed in Section 3.3. The plasmoids have a broad distribution of *w* and γ , and form a self-similar chain. They radiate hard X-rays with a spectrum calculated in Section 4. Photons with energies $E > m_e c^2$ convert to e^{\pm} pairs in photon–photon collisions (shown by the red arrows); this process greatly increases the optical depth of the reconnection layer.

Extreme flux states of NGC 4151 1859

INTEGRAL

OSSE, Comptel INTEGRAL/PICsIT SPI

Lubinski+10

see also Keck+15, Beuchert+17

V404 Cyg NuSTAR

Walton et al.

Figure 1 | Spectral evolution of V404 Cygni. a–c, Spectra in the soft γ -ray

Cautionary Notes

- Most hard X-ray spectra cover many dynamical times and many many cooling times
- Characterizing a corona by a single T, tau etc could be misleading
- Measured compactness values are probably <u>underestimates</u>
- Converting E_{cut} (exponential cutoff) to kT unreliable
- Outflowing corona will have anisotropic emission (Beloborodov99, Malzac+01)
- Some reflection viewed through corona (Petrucci+01, Wilkins+Gallo15, Steiner+17)

Luminous Coronae are

- Compact
- Highly magnetized
- Close to the black hole along spin axis
- Dynamic, possibly outflowing
- Probably contain electron-positron pairs
- Controls ~10-50% of the power
- Related to jets?
- Generate outer optically thin atmosphere which can affect polarization measurements

Garcia+16

Jiang+19, 20 in prep using modified SS equations (Svensson&Zdziarski93)

THE ASTROPHYSICAL JOURNAL, 930:18 (24pp), 2022 May 1 Jingyi Wang+

Systematic behaviour seen in Hard State BHB

Destruction followed by formation of AGN Corona in 1ES 1927+654

ASASSN 18el: Change-look AGN, z=0.017 2018 Sep 27 - 2022 Jun 18 5850/6231 GTIs BGsub: Model 3C50 g2021

Ricci+21, Masterson+22

M.Masterson

1ES 1927

On re-acceleration, pairs and the high-energy spectrum of AGN and Galactic black hole candidates

G. Ghisellini,¹ F. Haardt² and A. C. Fabian³1993

Figure 2. Comptonization spectra calculated with a Monte Carlo code for different electron distributions. Solid line: thermal distribution, with kT = 171 keV; short-dashed line: power-law distribution, $N(\gamma) \propto \gamma^{-2}$, with $1 < \gamma < 3$; long-dashed line: $N(\gamma) = \text{constant}$, with $1 < \gamma < 2.37$. All models have the same $\tau_T = 0.35$.

X-ray Background Spectrum

4U1543-624 Ludlam+20

18 min binary composed of CO WD + NS

Coronal Size from Microlensing: Coronae are Compact

Chartas15

Cyg X-1

REMINDER

also Gilfanov+00, Wilms+06, Novak+11

Summary of New Results

- Relativistic reflection and reverberation common in luminous accreting BH
- First X-ray reverberation AGN BH mass from IRAS13224 (10% uncertainty; Alston+20)
- Possible absorption lines from disc surface
- Measuring surface disc density for objects with BH mass < 2 x 10⁷ M_{sun} (Jiang+19a,b,c,20)
- Approximate agreement between height as measured by reverberation and through the ionization parameter
- Obtaining geometry of innermost 5r_g around BH the heart of the AGN

The Future

- More objects and outbursts followed more closely
- eROSITA, XRISM, eXTP, ATHENA
- Polarization (IXPE)
- Understand the corona
- Links to jets?
- Links to optical, UV etc
- Evolution of AGN BH spin with redshift
- •

SCHEMATIC AGN SED, shifted up in E but similar shape in BHB

1H0707-495

IRAS13224-3809

IRAS13224-3809 XMM spectra in 5 flux states

Use Ionization Parameter to infer "Euclidean" coronal height h₀

$$\xi = L/nh_0^2$$

BUT need to include effects of strong gravity (light bending, blueshifts etc)

Concept of Compactness (L/R) introduced in 1980

EXTREME NONTHERMAL RADIATION FROM ACTIVE GALACTIC NUCLEI

A. CAVALIERE AND P. MORRISON

Received 1979 September 24; accepted 1980 February 29

ABSTRACT

The physics of emission from the powerful continuum sources within active galactic nuclei can be characterized by the parameter L/R, a measure of compactness. For values of L/R exceeding some 10^{30} ergs s⁻¹ cm⁻¹ energy losses by relativistic electrons are so rapid that they must come into general balance with simultaneous processes of energy gain.

The ratio L/R determines the photon collision analog of the optical depth for an emitting electron

L/R is proportional to the column density of photons in the source

Coronal Height Measurement

- Euclidean estimate $h_0 \sim 0.4 1.7 r_g$
- Flux boosted height $h \sim 2 5 r_g$
- Reverberation height h $\sim 6 12 r_g$

Other Considerations

- Returning radiation?
- Size of corona

Vasudevan+16

Further selection effect

- ISCO needs to be well-illuminated to be measured.
- Implies that coronal height less than about $12r_g$.
- More difficult to measure in objects of low spin.
- Analysis of 199 AGN X-ray spectra from deep fields shows broad FeK line in 2/3 with preference for high spin (Baronchelli+18,20)