

X-ray polarimetry observations (IXPE)

Manel Errando Washington University in St Louis

Polarization measures geometry

Polarization is a vector \rightarrow measures geometry

Electric vector position angle = EVPA

•Synchrotron radiation \rightarrow EVPA perpendicular to magnetic field lines

Scattering/reflection →
 EVPA perpendicular to scattering plane

Strong magnetic fields →
 Opacity different parallel vs perpendicular to B
 EVPA transported along B in strong B

Strong gravitational fields →
 EVPA parallel-transported along space-time geodesics

Polarization measures geometry

McKinney + Blandford 2009

X-rays Reveal skeleton X-ray polarization Reveals magnetic field structure in astrophysical objects

IXPE status and operations

- Launched on Dec 9th 2021.
- Boom deployed on Dec 15.
- Commissioning and calibration finished successfully.
- Science operations started Jan 11 2022.
- Sensitive to X-ray polarization in the 2-8 keV band.
- First X-ray polarimeter in space in 40 years.

X-ray polarization via the photoelectric effect

X-ray polarization via the photoelectric effect

		ixpedisplay	- 4
Configuration		Event Display Projections	
Input file path	M620_3118.lv1.fite		
Clustering threshold (ADC counts)	20.00	column manber	
Show raw data		140	
Fuent parameters		*2,2- 	
Public Tenand and		24-000000000000000000000000000000000000	
(beenting point loop)	0.050		
Energy (ACC country)	83/3	30	
Track ancle [dps]	-129.457		
Window size (sq)	\$72	-2.6 236	
Trock also [px]	71		
Darkenber [mm]	0.106, -2.087		
Longitudinal moment (mm2)	0.01962	5 5 002 000 100 000 000 000 000 000 000 000	
Tensverse moment (mm2)	0.00384		
Elengation	6.43574		
SKEWINESS	0.44960		
		3-	
		3.2 2/8 -126	
		-3,4 252 -60	
fansport ba-		0,4 0,2 0 0,2 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4	
H - H - H	3 / 6344	4	

Detector Unit (DU) INAF/IAPS, INFN-PI First photo-electron track obtained during IXPE science operations

SNR Cas A, 2022 January 11, initiated by 2.7-keV photon in DU1.

Key is to find photoelectron direction at interaction point.

Stokes parameters and MDP

- Work in Stokes parameters
 - Independent, gaussian errors
 - Simply additive
 - No coordinate singularity at $\Pi=0$
- Compute Stokes parameters (q_i, u_i) for each X-ray from initial direction of photoelectron
- Do spectropolarimetry (in Xspec) using spectra in Stokes I, Q, and U and 'modulation response'.

•Minimum Detectable Polarization (MDP)

 $MDP99 = \frac{4.29}{\mu s} \sqrt{\frac{s+b}{T}}$

where μ = modulation factor, *s* = source rate, *b* = background rate, *T* = exposure time.

For MDP = 2% with μ = 0.4 and b = 0, need 3×10⁵ X-rays.

IXPE capabilities

Liodakis+ 2019

IXPE targets to date

Tycho supernova remnant

 Radial, relatively well-ordered magnetic field gives rise to polarization ~10% and reproduces the measured EVPA.

X-ray polarization from the Vela pulsar wind nebula

How are particles accelerated in pulsar wind nebulae?

- Vela PWN has average PD ~ 45%
- Some regions have $PD \ge 60\%$
- PD is close to theoretical limit for polarization of synchrotron emission (~75% for Vela).
- Highly uniform magnetic field and acceleration with little or no turbulence.
- Evidence against turbulence-driven diffusive shock acceleration.
- Other processes, such as magnetic reconnection, may power this PWN.

Colors are 2–8 keV intensity. Bars show magnetic field direction from X-ray (black) or radio (silver) with length proportional to PD. Xie et al. 2022, Nature 612, 658

Magnetars

Photons polarized by magnetic field

- What is the state of the matter at the magnetized neutron star surface?
- Do high magnetic fields cause vacuum birefringence?

Figure shows thermal radiation from NS equatorial belt reprocessed by resonant Compton scattering (RCS) in the magnetosphere (Taverna et al. 2022).

Magnetars

Е

- 4U0142+61 shows PA swing of 90° (top)
- 1RXS J170849.0-400910 has constant PA
- Both have high PD.

•

- Pulse-phase-resolved data indicate surface is a solid, condensed due to the high magnetic field, which supports an atmosphere only in locally heated patches
 - PA rotation in 4U 0142+61 is consistent with vacuum birefringence but can be explained with other models since low energy Polarization Degree (PD) is low.

Particle acceleration in blazar jets

How are particles accelerated in blazar jets?

 In high synchrotron peak (HSP) blazars X-rays probe high energy particles that are near the acceleration site.

For Mrk 501, IXPE found:

- X-ray PD = 10% ± 2%, which is 2× > optical PD
- X-ray EVPA is parallel to radio jet.

Liodakis, I. et al. Nature 611, 677– 681 (2022)

First blazar observation: Mrk 501

The X-ray emitting region in relativistic jets is more compact than the that at longer wavelengths. The highest-energy particles occupy a small volume and radiate quickly.

Particle acceleration in blazar jets

How are particles accelerated in blazar jets?

- Energy-stratified relativistic electron population.
- Particles are accelerated by shock waves propagating along the jet and higher energy particles emit from more magnetically ordered regions closer to the acceleration site.

Polarization angle rotation: Mrk 421

- Rotation of the Xray polarization angle of ~85°/ day.
- Compatible with compact X-ray emitting region in helical motion around the jet spine.

Di Gesu, ME, et al. (2023) Nat. Astron.

Turbulence in the jet: 1ES 1959+650

ME et al. (2023) ApJ, in prep

Observations of a low frequency peaked blazar: BL Lac

Upper limit $\Pi_X < 12.6\%$

Summary, blazar jets

Increasing polarization \rightarrow Ordered B \rightarrow More compact region

More often than not: EVPA is aligned with the jet direction X-ray polarization is higher than optical polarization

Summary

- IXPE can detect
 - X-ray polarization in bright X-ray sources.
 - For very bright sources, energy dependence of the polarization degree and angle can be measures. Time-resolved analysis also possible.
- Energy range is limited to 2-8 keV.
- Data is publicly available and easy to analyze.
- Guest Observer program to start in 2024.
 Proposals due ~ October 2024.
- No observations of a strong flare yet.

Summary

- Polarization observations of blazars are telling us about the geometry and structural makeup of the radiation zone.
- Link to particle acceleration mechanism is not yet established.
- Theoretical models that have clear predictions of the polarization angle with respect to the object geometry and/or the chromatic dependence of polarization (radio, optical, X-rays) can be tested against current observations.
- Polarization-dependent radiation transport (relevant for high B fields) may change the observed polarization.

Accreting Stellar Mass Black Holes

Expectations before IXPE Launch

Thermal state

Temperature & Flux \Rightarrow area

Polarization \Rightarrow inclination & ISCO

Hard state

Pre-launch expectations: *IXPE* provides additional handles on system parameters and independent spin measurements.

Shape of Fe K-alpha line \Rightarrow location of ISCO Polarization \Rightarrow corona shape and location

Accreting Stellar Mass Black Holes

- High PD = 4.0±0.2 %
- PS increases with energy.
- PA parallel to jet
- > Corona is parallel to disk.
- In tension with lamppost corona models -narrow column along the jet axis or two compact regions above/ below BH

Science

2022

Krawczynski+

 \Rightarrow spin measurements relying

on lamppost coronas need revision.

Origins of polarized radiation - Reflection

A radio quiet AGN: Seyfert 2 galaxy MCG-05-23-16

26

Radio quiet AGN

Is the reflection component in AGN spectra reflected?

Scattering/reflection \rightarrow

EVPA perpendicular to scattering plane

Scattering through 90° produce high PD

Spectropolarimetric analysis for Circinus galaxy shows cold reflector which dominates hard X-ray emission has:

- PD = 28% ± 7%
- PA = 18° ± 5°, perpendicular to radio jet
- > Confirms AGN Unification Model.
- > Also constrains torus geometry.

X-ray pulsars

How are the neutron star magnetic fields oriented? How is the radiation produced?

- Pre-IXPE expected high PD \approx 60%-80%.
- Found PD of 5% to ~10%.
- Fits of rotating vector model (RVM) to PA versus pulse-phase enable measurement of pulsar inclination, spin axis position angle, and magnetic obliquity.
- Figure shows GRO J1008-57 (Tsygankov et al. 2023).
- Low PD to mode conversion in transition region between the upper hot layer and cooler underlying atmosphere.
- GRO J1008–57 and X Persei are nearly orthogonal rotators.

