Ultrahigh Energy Cosmic Rays

Glennys R. Farrar New York University

CDY Initiative for Understanding the Physics of the Extreme Accelerators in our Universe June 14, 2023

G. Farrar, CDY lecture, June 14, 2023

UHECRs: Essential Facts

- Mixed composition, evolves with energy
- Upper limit on energy mainly from accelerator(s)
- Sources apparently abundant rather than few & powerful

Air shower observables (hybrid observation)

Energy Spectrum

- Upper limit on energy comes mainly from accelerator(s)
 - + Rigidity cutoff R = $(E/Z) \approx 5 EV$ (70 EeV Si, 35 EeV N)
- Distinct features emerging in spectrum
- <u>Auger and TA agree within uncertainties</u> (Auger has ~5x statistics and direct energy calibration; less reliance on modeling)
- Highest energy Galactic CRs overlap the lowest energy extragalactic UHECRs

The joint Auger TA working group on energy spectrum

Understand the difference among the measurements at the UHEs:

- information on astrophysical phenomena
- correct combination of the data to achieve the full sky coverage

see F. Urban at this conference

UHECR 2010	Nagoya, Japan
UHECR 2012	Cern, Geneva
UHECR 2014	Springdale (Utah), USA
UHECR 2016	Kyoto, Japan
ICRC 2017	Busan, Korea
UHECR 2018	Paris, France
ICRC 2019	Madison, USA
ICRC 2021	Berlin, Germany

V.Versi, UHECR22

UHECR Hybrid Observatories

PIERRE AUGER OBSERVATORY

TELESCOPE ARRAY

Malargüe Mendoza (Argentina) 35⁰ S latitude

3000 km²

4 FD sites

1660 WCDs 1500 m spacing triangular grid

Millard County Utah (USA) 39⁰ N latitude

V.Versi, UHECR22

700 km²

507 scintillators 1200 m spacing square grid

3 FD sites

V.Versi, UHECR22

100% duty cycle

The energy scale

arXiv:1307.505	9]
Absolute fluorescence yield	3.4%
Fluores. spectrum and quenching param.	1.1%
Sub total (Fluorescence Yield)	3.6%
Aerosol optical depth	3% ÷ 6%
Aerosol phase function	1%
Wavelength dependence of aerosol scattering	0.5%
Atmospheric density profile	1%
Sub total (Atmosphere)	3.4% ÷ 6.2%
Absolute FD calibration	9%
Nightly relative calibration	2%
Optical efficiency	3.5%
Sub total (FD calibration)	9.9%
Folding with point spread function	5%
Multiple scattering model	1%
Simulation bias	2%
Constraints in the Gaisser-Hillas fit	3.5% ÷ 1%
Sub total (FD profile rec.)	6.5% ÷ 5.6%
Invisible energy	3% ÷ 1.5%
Statistical error of the SD calib. fit	0.7% ÷ 1.8%
Stability of the energy scale	5%
TOTAL	14%

Proc. 34 ICRC 2013 (Rio de Janeiro, Brazil)

AUGER

Proc. 32nd ICRC 2011 (Beijing, China), 12, 67 (2011) Astropart.Phys. 61 (2015) 93-101

TA

TA 21% Auger 14% both almost energy independent

G

TA SD (2019) outside of BR / LR Obs. Period

Parameter	Auger	TA
γ_1	3.29 ± 0.02	3.23 ± 0.01
γ_2	2.51 ± 0.03	2.63 ± 0.02
γ_3	3.05 ± 0.05	2.92 ± 0.06
γ_4	5.1 ± 0.3	5.0 ± 0.4
$E_{\text{ankle}}/\text{EeV}$	5.0 ± 0.1	5.4 ± 0.1
$E_{\rm instep}/{\rm EeV}$	13 ± 1	18 ± 1
$E_{\rm cut}/{\rm EeV}$	46 ± 3	71 ± 3

- same characterization of the spectral features
- agreement at the ankle and some tension at highest energies
- common declination band to disentangle astrophysical from experimental effects:

 $-15^{\circ} < \delta < 24.8^{\circ}$

Measurements in the full sky

Measurements in the common declination band

note: TA full trigger efficiency E>10^{18.8} eV

V.Versi, UHECR22

Composition

- <u>Composition becomes heavier with energy</u>
- <u>TA & Auger observations agree</u>
- Interpreting data to infer actual composition requires UHE air shower modeling

Mass composition results (i)

Important: LHC-tuned interaction models used for interpretation

 $\sigma_{X_1,p} \sim 45 - 55 \,\mathrm{g/cm^2}$ $\sigma_{X_1,\mathrm{Fe}} \sim 10 \,\mathrm{g/cm^2}$

(Phys. Rev. D90 (2014), 122005 & 122005, updated ICRC 2019)

(Phys. Rev. D96 (2017), 122003)

 $(E \sim 10^{18} \,\mathrm{eV})$

R. Engel, CRMME22

Pure Extragalactic

Different model scenarios considered for low-energy part (transition to galactic component), similar results for total composition obtained

- Roughly consistent with "Peters cycle": rigidity dependent acceleration
- Note relatively narrow range for each mass: rises and falls quickly

19.5

18.5

18.0

19.0

 $\log_{10}(E/eV)$

19.5

20.0

20.0

TA measurement of composition is consistent with Auger's

Testing the Compatibility of the Depth of the Shower Maximum Measurements performed at Telescope Array and the Pierre Auger Observatory

Auger-TA Mass Composition Working Group Report

<u>D.R. Bergman</u>, J. Bellido, V. de Souza, R. Engel, Z. Gerber, J.H. Kim, E. Mayotte, O. Tkachenko, M. Unger, A. Yushkov for the TA and Auger collaborations

Conclusion

We have constructed a representation of Auger X_{max} measurements as would have been seen in the TA detector using the Sibyll 2.3d high-energy interaction model.

This representation agrees with TA < X_{max} > measurements well, but there is disagreement at some energies in $\sigma(X_{max})$. This disagreement is plausibly due to the handling of X_{max} resolution due to varying aerosols at TA

A robust difference between the Auger and TA X_{max} measurements **has not been** found

A journal publication from the Mass Composition Working Group is forthcoming

Earlier differences due to:

- TA reliance on simulations
- low statistics
- sensitivity to shower modeling

UHECR air shower modeling

- Leading models: SibyII23.d and EPOS-LHC [also QGSJET]
- Tuned to LHC-data
- **Discrepancies describing UHE air showers** (10x greater CM energy; not p-p: UHECR + air nucleus, then pi's,etc + air)
 - ~30% more muons observed than models predict
 - predicted $\langle X_{max} \rangle \sim I\sigma$ too deep
 - muon production depth,...
- → Composition may be somewhat heavier than current models

What do we know about UHECR sources?

Magnetic deflections make source ID difficult

Magnetic deflections are large and uncertain at low rigidity

Larmor radius : 1.1 kpc (R_{EV} / B_{µG})

19

Indirect constraints on sources

- Detailed fit to spectrum & composition → processing in source environment [M. Muzio+GF, ApJL23]
- Large scale anisotropy [T. Bister+GF, in prep]
- [Hotspots]

UFA 2015 model proposed to explain light population below ankle Cosmic Rays are Accelerated, then fragmented

Unger, GF & Anchordoqui 2015

Cosmic Rays are Accelerated, then fragmented

Unger, GF & Anchordoqui 2015

G. Farrar, ICRR, Jan. 17, 2023

Constrains the source environment (T, B, ...)!Muzio+GF Ap|L23 **UHECRs** 's & EGB A IceCube Cascades 2020 IceCube Glashow 2021 EGB B $E^{3\frac{dN}{dE}}$ (eV²km⁻²sr⁻¹yr⁻¹) 10^{-6} Auger 2019 shifted $\chi^2/ndf = 1.05$ TDGRB IceCube ν_{μ} 2019 HE bin IGRB 1.0 10^{-7} 0.5 T 1 cm 0.0 IceCube 10^{18} 10^{19} 10^{20} (GeV E/eV 10^{-8} Sibyll2.3c 60 $\langle X_{\rm max} \rangle$ (g cm⁻²) 002 008 Auger 2019 shifted (g cm Propagation ν 's 10^{-9} 40Source Photohadronic ν 's Source Hadronic ν 's ێ⁵ 20 Fe Non-UHECR ν 's 10^{-10} 10^{13} 10^{18} 10^{19} 10^{20} 10^{18} 10^{19} 10^{20} 10^{9} 10^{10} 10^{11} 10^{12} 10^{14} 10^{15} 10^{16} 10^{17} 10^{18} 10^{8} 10^{19} E/eV E/eV E/eV

G. Farra $\gamma_{inj} = -1.45^{+1.25}_{-1.15} \rightarrow \text{Diffusive Shock Accel. OK (accelerator <math>\neq$ source) ²³

Constrain the Surroundings of UHECR Accelerators (M. Muzio+GF, ApJL2032)

btw: $\gamma_{inj} = -1.45^{+1.25}_{-1.15} \rightarrow \text{Diffusive Shock Accel. OK (accelerator <math>\neq$ source)

$T_{surround} = 60 - 2000 K$

{Brms , L} of source (not accelerator as in Hillas) is constrained

G.	Farrar,	ICRR, Jan.	17,2023
----	---------	------------	---------

black-body case $n_0 = 1$; the conversion for other n_0 values is $L = L_{\rm BB}/n_0$, $B = n_0 B_{\rm BB}$, $\lambda_{\rm c} = \lambda_{\rm c,BB}/n_0$, and $n_{\rm g} = n_0 n_{g,\rm BB}$.

Muzio&GF arXiv:2209.08068

T_{surround} = 60 - 2000 K excludes many candidate acceleration regions

Massive Galaxy Clusters (2 x disfavored: $T = 10^{7-8}$ K; $n_0 = 1$) AGN:

- radio lobes (T ≈ few keV)
- ?internal shocks in jet? may be problematic; must also account for boost
- inner AGN disk: maybe ok (T=60-1000 K)
 - but nearby dangerous regions & must account boost

Source Density Constraint from Anisotropy Teresa Bister + GF, to appear soon

DATA (Auger 2018):

- Ansatz: UHECR sources ~ large scale structure
 - \rightarrow approximate illumination map
 - + GMF deflections:

Good accounting of dipole magnitude, direction & energy dependence.

[Ding, Globus, GF Ap|L 2021]

- **New:** [T. Bister+GF, in prep]
 - Self-consistent spectrum & composition
 - "Bias" of sources relative to LSS? (none seen)
 - Place constraints on source density

Modeling Anisotropy above 8 EeV Teresa Bister + GF, in prep,

- LSS \rightarrow Illumination map
- propagate thru GMF
- good fit to dipole

Source density < 10-3 Mpc-3 strongly disfavored Teresa Bister + GF, to appear soon

Continuum model gives good fit to dipole. Create 1000 "source catalogs", source densities 10-3, 10-4, 10-5, 10-6 Mpc-3

Sampling source density: Dipole Amplitude and Direction

fraction within statistical uncertainty:

densities >10⁻² / Mpc³

- . behave as continuous model: 68% within 68% statistical
- combining direction & amplitude: almost independent $(0.68^2 = 0.46)$

densities <=10⁻⁴ / Mpc³:

number of examples where dipole direction & amplitude fit at the same time: 0 / 1000

ci's are even more constraining on source density than dipole

Expect intermediate multipoles if source density $< 10^{-3}$ Mpc⁻³.

Unlikely to see observed dipole direction and magnitude for density $< 10^{-3}$ Mpc⁻³.

Data take-aways

- Auger & TA in agreement on both spectrum and composition
- Spectrum now very well measured; multiple breaks. Rigidity cuts off at ~ 5 EV.
- Lowest energy extragalactic CRs are protons and He.
- Composition becomes heavier with E, possibly reaching Fe

Interpretations

- Processing in region surrounding sources (UFA, MUF, ...)
 - naturally explains sub-ankle extragalactic population
 - → Spectral index can be consistent with DSA: escape from source environment hardens intrinsic spectrum of accelerator
- + Sources appear to be abundant and relatively weak
- + Tidal disruption? (GF+Gruzinov, ApJ2009)

Puzzle

 Why is there so little (≤ factor-3) variation in composition and R_{max} of sources? Ehlert, Oikonomou, Unger 2023

G. Farrar, CDY lecture, June 14, 2023

31

Thanks