Particle Acceleration in (relativistic) Shearing Flows

Frank M. Rieger

CDY Spring Series

February 8, 2023

TP ITP Univ. Heidelberg
DFG
Max Planck Institut für Kernphysik

- Astrophysical Motivation \& Exemplary Context
- Large-scale Jets in AGN
- Origin of extended high-energy emission
- Ubiquity of Shearing flows
- Shear Particle Acceleration
- Focus on stochastic Fermi-type acceleration (basic idea)
- Particle transport, acceleration and power-law formation
- Modelling electron shear acceleration in large-scale jets
- On UHECR acceleration in shearing AGN flows
- Summary

Exemplary Astrophysical Context

Large-scale Jets in Active Galaxies

- relativistic jets \& hot spots \& back flows
- flow Lorentz factors $\Gamma \sim(1.5-10)$
- spatial dimension up to several $100 \mathrm{kpc} \sim 10^{6} \mathrm{lyr}$
- laminar appearance (though high fluid Reynolds numbers, $\operatorname{Re}=\rho u \mathrm{~L} / \mu>10^{10}$)

Worrall \& Birkinshaw 2006

On ultra-relativistic electrons in AGN Jets I

_Example: High-Energy Emission from large-scale jets

- extended X-ray electron synchrotron emission
- needs electron Lorentz factors $\gamma_{\mathrm{e}} \sim 10^{8}$

- short cooling timescale $\mathrm{t}_{\text {cool }} \propto \mathrm{I} / \mathrm{\gamma}_{\mathrm{e}}$; cooling length $\mathrm{c} \mathrm{t}_{\text {cool }} \ll \mathrm{kpc}$
- distributed acceleration mechanism required (Sun, Yang, FR, Liu \& Aharonian 2018 for M87)

On ultra-relativistic electrons in AGN Jets II

VHE emission along the kpc-jet of Cen \mathbf{A}

- Inverse Compton up-scattering of dust by ultrarelativistic electrons with $\gamma_{e}=10^{8}$
- verifies X-ray synchrotron interpretation
- continuous re-acceleration required to avoid rapid cooling

On ultra-relativistic electrons in AGN Jets II

VHE emission along the kpc-jet of Cen \mathbf{A}

- Inverse Compton up-scattering of dust by ultrarelativistic electrons with $\gamma_{e}=10^{8}$
- verifies X-ray synchrotron interpretation
- continuous re-acceleration required to avoid rapid cooling

[^0]
Phenomenological Context

_large-scale jets as possible UHECR accelerators (Hillas)
(e.g., Aharonian, Belyanin, Derishev+ 2002)

Cosmic Ray Spectrum

How to accelerate electrons to $\gamma_{\mathrm{e}} \sim 10^{8}$ and keep them energized?

A possible scenario...

On the naturalness of velocity shears in AGN...

- Jet origin: BH-driven (BZ) jet \& disk-driven (BP) outflow... (e.g., Mizuno 2022)
- Jet propagation: instabilities, mixing, layer formation...
- Jet observations: limb-brightening \& polarisation signatures...
(e.g., Perucho 2019)
(e.g., Kim+ 20I8)
- M87: significant structural patterns on sub-pc scales
\Rightarrow presence of both slow ($\sim 0.5 c$) and fast ($\sim 0.92 c$) components.... [similar indications in Cen A, cf. EHT observations in Janssen+ 202I]

Fermi-type Particle Acceleration

Kinematic effect resulting from scattering off magnetic inhomogeneities E. Fermi, Phys. Rev. 75, 578 [1949]
_Ingredients: in frame of scattering centre

- momentum magnitude conserved
- particle direction randomised
_Characteristic energy change per scattering:

$$
\Delta \epsilon=\epsilon_{2}-\epsilon_{1}=2 \Gamma_{s}^{2}\left(\epsilon_{1} u_{s}^{2} / c^{2}-\overrightarrow{p_{1}} \cdot \overrightarrow{u_{s}}\right)
$$

$$
p_{1} \simeq \epsilon_{1} / c
$$

\Rightarrow energy gain for head-on ($\overrightarrow{\mathrm{p}}_{1} \cdot \overrightarrow{\mathrm{u}}_{s}<0$), loss for following collision ($\overrightarrow{\mathrm{p}}_{\mathrm{I}} \cdot \overrightarrow{\mathrm{u}}_{s}>0$)

- I. stochastic: average energy gain 2nd order: $\left\langle\Delta \varepsilon>\propto\left(\mathrm{u}_{s} / \mathrm{c}\right)^{2} \varepsilon\right.$
- II. shock: spatial diffusion, head-on collisions, gain Ist order: $\left\langle\Delta \varepsilon>\propto\left(u_{s} / \mathrm{c}\right) \varepsilon\right.$

Stochastic Shear Particle Acceleration

- III. Non-gradual shear flow

- like 2nd Fermi, stochastic process with average gain per cycle (crossing and recrossing):

$$
<\Delta \epsilon>\sim \Gamma_{\Delta}^{2} \beta_{\Delta}^{2} \epsilon
$$

with relative velocity $\beta_{\Delta}=\left(u_{1}-u_{2}\right) /\left[\left(1-u_{1} u_{2} / c^{2}\right) c\right]$
 provided particle mean free path $\lambda>\Delta r$

Stochastic Shear Particle Acceleration

- III. Non-gradual shear flow

- like 2nd Fermi, stochastic process with average gain per cycle (crossing and recrossing):

$$
<\Delta \epsilon>\sim \Gamma_{\Delta}^{2} \beta_{\Delta}^{2} \epsilon
$$

with relative velocity $\beta_{\Delta}=\left(u_{1}-u_{2}\right) /\left[\left(1-u_{1} u_{2} / c^{2}\right) c\right]$

provided particle mean free path $\lambda>\Delta r$

- characteristic acceleration timescale:

$$
t_{\mathrm{acc}} \simeq \frac{\epsilon}{(d \epsilon / d t)} \simeq \frac{\epsilon}{\langle\Delta \epsilon\rangle} t_{c} \propto \lambda
$$

with cycle time t_{c}

Stochastic Shear Particle Acceleration (basic idea) I

- IV. Gradual shear flow with frozen-in scattering centres:
non-relativistic $\vec{u}=u_{z}(x) \vec{e}_{z}$
- like 2nd Fermi, stochastic process with average gain:

$$
\langle\Delta \epsilon\rangle \propto\left(\frac{u}{c}\right)^{2} \epsilon=\frac{1}{c^{2}}\left(\frac{\partial u_{z}}{\partial x}\right)^{2} \lambda^{2} \epsilon
$$

using characteristic effective velocity:

$$
u=\left(\frac{\partial u_{z}}{\partial x}\right) \lambda \quad, \text { where } \lambda=c \tau \quad \text { particle mean free path }
$$

Berezhko \& Krymsky I98I; Berezhko I982; Earl+ I988; Webb I989; Jokipii \& Morfill I990; Webb+ I994; FR \& Duffy 2004, 2006, 2016; Liu, FR \& Aharonian 2017; Webb+ 2018, 2019; Lemoine 2019; FR \& Duffy 2019, 2021....

Stochastic Shear Particle Acceleration (basic idea) I

- IV. Gradual shear flow with frozen-in scattering centres:
non-relativistic $\vec{u}=u_{z}(x) \vec{e}_{z}$
- like 2nd Fermi, stochastic process with average gain:

$$
<\Delta \epsilon>\propto\left(\frac{u}{c}\right)^{2} \epsilon=\frac{1}{c^{2}}\left(\frac{\partial u_{z}}{\partial x}\right)^{2} \lambda^{2} \epsilon
$$

using characteristic effective velocity:

$$
u=\left(\frac{\partial u_{z}}{\partial x}\right) \lambda, \text { where } \lambda=c \tau \text { particle mean free path }
$$

- leads to:

$$
t_{a c c}=\frac{\epsilon}{(d \epsilon / d t)} \sim \frac{\epsilon}{\langle\Delta \epsilon\rangle} \times \frac{\lambda}{c} \propto \frac{1}{\lambda}
$$

\Rightarrow seeds from acceleration @ shock or stochastic...
\Rightarrow easier for protons... (Δ UHECR)

Berezhko \& Krymsky I98I; Berezhko I982; Earl+ I988; Webb 1989; Jokipii \& Morfill I990; Webb+ I994; FR \& Duffy 2004, 2006, 2016; Liu, FR \& Aharonian 2017; Webb+ 2018, 2019; Lemoine 2019; FR \& Duffy 2019, 2021....

Stochastic Shear Particle Acceleration (basic idea) II

Calculate Fokker Planck coefficients for particle travelling across shear $\mathbf{u}_{z}(x)$ with

$$
\mathbf{p}_{2}=\mathbf{p}_{1}+\mathrm{m} \delta \mathbf{u} \quad \text { where } \delta u=\left(\mathrm{du}_{z} / \mathrm{dx}\right) \delta \mathrm{x} \quad \text { and } \delta \mathrm{x}=\mathrm{v}_{\mathrm{x}} \tau, \quad \tau=\lambda / c
$$

$$
\Delta p:=p_{2}-p_{1} \Rightarrow\left\{\begin{aligned}
\left\langle\frac{\Delta p}{\Delta t}\right\rangle & \propto p\left(\frac{\partial u_{z}}{\partial x}\right)^{2} \tau \\
\left\langle\frac{(\Delta p)^{2}}{\Delta t}\right\rangle & \propto p^{2}\left(\frac{\partial u_{z}}{\partial x}\right)^{2} \tau
\end{aligned}\right.
$$

\Rightarrow detailed balance satisfied [scattering being reversible $P(p,-\Delta p)=P(p-\Delta p, \Delta p)]$

Stochastic Shear Particle Acceleration (basic idea) II

Calculate Fokker Planck coefficients for particle travelling across shear $\mathbf{u}_{z}(x)$ with

$$
\mathbf{p}_{2}=\mathbf{p}_{1}+\mathrm{m} \delta \mathbf{u} \quad \text { where } \delta u=\left(d u_{z} / d x\right) \delta x \quad \text { and } \delta x=v_{x} \tau, \quad \tau=\lambda / c
$$

$$
\Delta p:=p_{2}-p_{1} \Rightarrow\left\{\begin{aligned}
\left\langle\frac{\Delta p}{\Delta t}\right\rangle & \propto p\left(\frac{\partial u_{z}}{\partial x}\right)^{2} \tau \\
\left\langle\frac{(\Delta p)^{2}}{\Delta t}\right\rangle & \propto p^{2}\left(\frac{\partial u_{z}}{\partial x}\right)^{2} \tau
\end{aligned}\right.
$$

\Rightarrow detailed balance satisfied [scattering being reversible $P(p,-\Delta p)=P(p-\Delta p, \Delta p)]$
Fokker Planck eq. reduces to momentum diffusion equation:

$$
\begin{gathered}
\left.\frac{\partial f}{\partial t}=\frac{1}{p^{2}} \frac{\partial}{\partial p}\left(p^{2} D \frac{\partial f}{\partial p}\right) \right\rvert\, \\
D=\frac{1}{15}\left(\frac{\partial u_{z}}{\partial x}\right)^{2} p^{2} \tau \propto p^{2+\alpha} \text { for } \tau:=\tau_{0} p^{\alpha}
\end{gathered}
$$

Stochastic Shear Particle Acceleration (basic idea) III

- Momentum-dependent part of the phase space distribution function $f(t, p)$ obeys diffusion equation in momentum space:
$\frac{\partial f(t, p)}{\partial t}=\frac{1}{p^{2}} \frac{\partial}{\partial p}\left(p^{2} D(p) \frac{\partial f(t, p)}{\partial p}\right)+.$.
with $D(p) \propto<(\Delta p)^{2}>=D_{0} p^{2+\alpha},(\alpha \geq 0)$ momentum-space diffusion coefficient

Stochastic Shear Particle Acceleration (basic idea) III

- Momentum-dependent part of the phase space distribution function $f(t, p)$ obeys diffusion equation in momentum space:

$$
\frac{\partial f(t, p)}{\partial t}=\frac{1}{p^{2}} \frac{\partial}{\partial p}\left(p^{2} D(p) \frac{\partial f(t, p)}{\partial p}\right)+\ldots=(4+\alpha) \frac{D(p)}{p} \frac{\partial f(t, p)}{\partial p}+D(p) \frac{\partial^{2} f(t, p)}{\partial p^{2}}+\ldots
$$

with $D(p) \propto<(\Delta p)^{2}>=D_{0} p^{2+\alpha},(\alpha \geq 0)$ momentum-space diffusion coefficient

Stochastic Shear Particle Acceleration (basic idea) III

- Momentum-dependent part of the phase space distribution function $f(t, p)$ obeys diffusion equation in momentum space:

$$
\frac{\partial f(t, p)}{\partial t}=\frac{1}{p^{2}} \frac{\partial}{\partial p}\left(p^{2} D(p) \frac{\partial f(t, p)}{\partial p}\right)+\ldots=(4+\alpha) \frac{D(p)}{p} \frac{\partial f(t, p)}{\partial p}+D(p) \frac{\partial^{2} f(t, p)}{\partial p^{2}}+\ldots
$$

with $D(p) \propto<(\Delta p)^{2}>=D_{0} p^{2+\alpha},(\alpha \geq 0)$ momentum-space diffusion coefficient

Example: Instantaneous injection at time $\mathrm{t}=0$ with $\mathrm{p} 0=5$ for $\alpha=0$

Phase-space distribution function $f(t, p)$

Energy distribution $n(p) p^{2} \propto p^{4} f(t, p)$

Stochastic Shear Particle Acceleration (basic idea) IV

Local power law formation above injection po with index depending on scaling of particle mean free path:

$$
n(p) \propto p^{2} f(p) \propto p^{-(1+\alpha)}
$$

- with $\tau=\tau_{0} \mathrm{p}^{\alpha}$, e.g. $\alpha=\mathrm{I} / 3$ for Kolmogorov, or $\alpha=1$ for Bohm-type
- characteristic for time-independent (steady-state) solution

(e.g., Berezhko I982; FR \& Duffy 2006)

Diffusive Particle transport

Full non-relativistic Particle Transport Equation (PTE)

Start from non-relativistic Boltzmann equation with simple BKG-type collision term

- use mixed system of phase-space coordinates
- Galilean trafo $p_{i}=p_{i}^{\prime}+m u_{i} \quad$ (background flow speed u_{i}, comoving p_{i}^{\prime})
- diffusion approximation $f=f_{0}+f_{1}$, with $\left\langle f_{1}\right\rangle=0$

$$
\begin{aligned}
& \frac{\partial f_{0}}{\partial t}+u_{i} \frac{\partial f_{0}}{\partial x_{i}}-\frac{p^{\prime}}{3} \frac{\partial u_{i}}{\partial x_{i}} \frac{\partial f_{0}}{\partial p^{\prime}}-\frac{\partial}{\partial x_{i}}\left(\frac{\tau}{3} \frac{p^{\prime 2}}{m^{2}} \frac{\partial f_{0}}{\partial x_{i}}\right) \\
&+\frac{2 \tau p^{\prime}}{3} A_{i} \frac{\partial^{2} f_{0}}{\partial x_{i} \partial p^{\prime}}+\frac{1}{3 p^{\prime 2}} \frac{\partial\left(\tau p^{\prime 3}\right)}{\partial p^{\prime}} A_{i} \frac{\partial f_{0}}{\partial x_{i}} \\
& \text { shear } \longrightarrow-\frac{\Gamma}{p^{\prime 2}} \frac{\partial}{\partial p^{\prime}}\left(\tau p^{\prime 4} \frac{\partial f_{0}}{\partial p^{\prime}}\right)+\frac{p^{\prime}}{3} \frac{\partial\left(\tau A_{i}\right)}{\partial x_{i}} \frac{\partial f_{0}}{\partial p^{\prime}}=0
\end{aligned}
$$

$$
\Gamma=\frac{1}{30}\left(\frac{\partial u_{i}}{\partial x_{k}}+\frac{\partial u_{k}}{\partial x_{i}}\right)^{2}-\frac{2}{45} \frac{\partial u_{i}}{\partial x_{i}} \frac{\partial u_{k}}{\partial x_{k}}
$$

(Earl, Jokipii \& Morfill I988;

$$
A_{i}=\frac{\partial u_{i}}{\partial t}+u_{l} \frac{\partial u_{i}}{\partial x_{l}} \quad \text { "inertial drifts" }
$$

Full non-relativistic Particle Transport Equation (PTE)

Start from non-relativistic Boltzmann equation with simple BKG-type collision term

- use mixed system of phase-space coordinates
- Galilean trafo $p_{i}=p_{i}^{\prime}+m u_{i}$ (background flow speed u_{i}, comoving pi')
- diffusion approximation $f=f_{0}+f_{1}$, with $\left\langle f_{1}\right\rangle=0$

$$
\begin{aligned}
& \frac{\partial f_{0}}{\partial t}+u_{i} \frac{\partial f_{0}}{\partial x_{i}}-\frac{p^{\prime}}{3} \frac{\partial u_{i}}{\partial x_{i}} \frac{\partial f_{0}}{\partial p^{\prime}}-\frac{\partial}{\partial x_{i}}\left(\frac{\tau}{3} \frac{p^{\prime 2}}{m^{2}} \frac{\partial f_{0}}{\partial x_{i}}\right) \\
&+\frac{2 \tau p^{\prime}}{3} A_{i} \frac{\partial^{2} f_{0}}{\partial x_{i} \partial p^{\prime}}+\frac{1}{3 p^{\prime 2}} \frac{\partial\left(\tau p^{\prime 3}\right)}{\partial p^{\prime}} A_{i} \frac{\partial f_{0}}{\partial x_{i}} \\
& \text { shear } \longrightarrow-\frac{\Gamma}{p^{\prime 2}} \frac{\partial}{\partial p^{\prime}}\left(\tau p^{\prime 4} \frac{\partial f_{0}}{\partial p^{\prime}}\right)+\frac{p^{\prime}}{3} \frac{\partial\left(\tau A_{i}\right)}{\partial x_{i}} \frac{\partial f_{0}}{\partial p^{\prime}}=0
\end{aligned}
$$

$$
\Gamma=\frac{1}{30}\left(\frac{\partial u_{i}}{\partial x_{k}}+\frac{\partial u_{k}}{\partial x_{i}}\right)^{2}-\frac{2}{45} \frac{\partial u_{i}}{\partial x_{i}} \frac{\partial u_{k}}{\partial x_{k}}
$$

(Earl, Jokipii \& Morfill I988;
cf. also Williams \& Jokipii 199।; FR 200I)
$\left\lvert\, A_{i}=\frac{\partial u_{i}}{\partial t}+u_{l} \frac{\partial u_{i}}{\partial x_{l}} \quad\right.$ "inertial drifts"
for steady shear flow $\boldsymbol{u}=u_{\mathbf{z}}(x) \mathbf{e}_{\mathbf{z}}$, adiabatic and inertial terms vanish; space-independent part equivalent to shear-diffusion equation

Full non-relativistic Particle Transport Equation (PTE)

Start from non-relativistic Boltzmann equation with simple BKG-type collision term

- use mixed system of phase-space coordinates
- Galilean trafo $p_{i}=p_{i}{ }^{\prime}+m u_{i} \quad$ (background flow speed u_{i}, comoving $p_{i}{ }^{\prime}$)
- diffusion approximation $f=f_{0}+f_{1}$, with $\left\langle f_{1}\right\rangle=0$

$$
\Gamma=\frac{1}{30}\left(\frac{\partial u_{i}}{\partial x_{k}}+\frac{\partial u_{k}}{\partial x_{i}}\right)^{2}-\frac{2}{45} \frac{\partial u_{i}}{\partial x_{i}} \frac{\partial u_{k}}{\partial x_{k}}
$$

(Earl, Jokipii \& Morfill I988;
cf. also Williams \& Jokipii 199।; FR 200I)
$\left\lvert\, A_{i}=\frac{\partial u_{i}}{\partial t}+u_{l} \frac{\partial u_{i}}{\partial x_{l}} \quad\right.$ "inertial drifts"
for steady shear flow $\boldsymbol{u}=u_{\mathbf{z}}(x) \mathbf{e}_{\mathbf{z}}$, adiabatic and inertial terms vanish; space-independent part equivalent to shear-diffusion equation

$$
\begin{aligned}
& \frac{\partial f_{0}}{\partial t}+u_{i} \frac{\partial f_{0}}{\partial x_{i}}-\frac{p^{\prime} \partial u_{i} \partial f_{0}}{3} \frac{\partial x_{i}}{\partial p^{\prime}}-\frac{\partial}{\partial x_{i}}\left(\frac{\tau}{3} \frac{p^{2}}{m^{2}} \frac{\partial f_{0}}{\partial x_{i}}\right) \\
& +\frac{2 \sim p^{\prime}}{3} A_{i} \frac{\partial^{2} f_{0}}{\partial x_{i} \partial p^{\prime}}+\frac{1}{3 p^{\prime 2}} \frac{\partial\left(\tau p^{\prime 3}\right)}{\partial p^{\prime}}<A_{i} \frac{\partial f_{0}}{\partial x_{i}} \\
& \begin{array}{l}
\text { shear } \\
\text { term }
\end{array} \longrightarrow-\frac{\Gamma}{p^{\prime 2}} \frac{\partial}{\partial p^{\prime}}\left(\tau p^{4} \frac{\partial f_{0}}{\partial p^{\prime}}\right)+\frac{p^{\prime}}{3} \frac{\partial\left(\tau A_{i}\right) \frac{\partial f_{0}}{\partial x_{i}}}{\partial p^{\prime}}=0
\end{aligned}
$$

Relativistic PTE Generalisation

Particle Transport Equation (PTE) - mixed frame - for isotopic distribution function $f_{0}\left(x^{\alpha}, p\right)$, with $x^{\alpha}=(c t, x, y, z$,$) and metric tensor g_{\alpha \beta}$
(fluid four velocity u^{α} and fluid four acceleration $\AA_{\alpha}=u^{\beta} u_{\alpha ; \beta}$)

$$
\begin{aligned}
& \nabla_{\alpha}\left[c u^{\alpha} f_{0}-\kappa\left(g^{\alpha \beta}+u^{\alpha} u^{\beta}\right)\left(\frac{\partial f_{0}}{\partial x^{\beta}}-\dot{u}_{\beta} \frac{\left(p^{0}\right)^{2}}{p} \frac{\partial f_{0}}{\partial p}\right)\right] \\
& \quad+\frac{1}{p^{2}} \frac{\partial}{\partial p}\left[-\frac{p^{3}}{3} c u_{; \beta}^{\beta} f_{0}+p^{3}\left(\frac{p^{0}}{p}\right)^{2}\right. \\
& \left.\quad \times \kappa \dot{u}^{\beta}\left(\frac{\partial f_{0}}{\partial x^{\beta}}-\dot{u}_{\beta} \frac{\left(p^{0}\right)^{2}}{p} \frac{\partial f_{0}}{\partial p}\right)-\Gamma \tau p^{4} \frac{\partial f_{0}}{\partial p}\right]=Q .
\end{aligned}
$$

(Webb I989; cf. also FR \& Mannheim 2002; Webb+ 20I 8)

Particle Transport Equation (PTE) - mixed frame - for isotopic distribution function $f_{0}\left(x^{\alpha}, p\right)$, with $x^{\alpha}=(c t, x, y, z$,$) and metric tensor g_{\alpha \beta}$
(fluid four velocity u^{α} and fluid four acceleration $\hat{u}_{\alpha}=u^{\beta} u_{\alpha ; \beta}$)

$$
\begin{aligned}
& \nabla_{\alpha}\left[c u^{\alpha} f_{0}-\kappa\left(g^{\alpha \beta}+u^{\alpha} u^{\beta}\right)\left(\frac{\partial f_{0}}{\partial x^{\beta}}-\dot{u}_{\beta} \frac{\left(p^{0}\right)^{2}}{p} \frac{\partial f_{0}}{\partial p}\right)\right] \\
& \quad+\frac{1}{p^{2}} \frac{\partial}{\partial p}\left[-\frac{p^{3}}{3} c u_{; \beta}^{\beta} f_{0}+p^{3}\left(\frac{p^{0}}{p}\right)^{2}\right. \\
& \left.\quad \times \kappa \dot{u}^{\beta}\left(\frac{\partial f_{0}}{\partial x^{\beta}}-\dot{u}_{\beta} \frac{\left(p^{0}\right)^{2}}{p} \frac{\partial f_{0}}{\partial p}\right)-\Gamma \tau p^{4} \frac{\partial f_{0}}{\partial p}\right]=Q
\end{aligned}
$$

(Webb 1989; cf. also FR \& Mannheim 2002; Webb+ 20I 8)

Note: for steady shear flow profile $\vec{u}=u(r) \overrightarrow{e_{z}}$, fluid four acceleration $\dot{u}_{\beta}=0$ and divergence $\nabla_{\beta} u u^{\beta}=0$

shear term

Γ relativistic shear coefficient

Particle Transport Equation (PTE) - mixed frame - for isotopic distribution function $f_{0}\left(x^{\alpha}, p\right)$, with $x^{\alpha}=(c t, x, y, z$,$) and metric tensor g_{\alpha \beta}$
(fluid four velocity u^{α} and fluid four acceleration $\dot{u}_{\alpha}=u^{\beta} u_{\alpha ; \beta}$)

$$
\begin{aligned}
& \nabla_{\alpha}\left[c u^{\alpha} f_{0}-\kappa\left(g^{\alpha \beta}+u^{\alpha} u^{\beta}\right)\left(\frac{\partial f_{0}}{\partial x^{\beta}}-\frac{\left(p^{0}\right)^{2} \partial f_{0}}{p}\right)\right] \\
& +\frac{1}{p^{2}} \frac{\partial}{\partial p}\left[\frac{p^{3}}{3} \frac{p^{3}}{e_{0}}\left(\frac{p^{0}}{p}\right)^{2}\right. \\
& \left.\left.\times \operatorname{kin}^{\beta\left(\frac{\partial f_{0}}{\partial x^{\beta}}\right.}-\frac{\left(p^{0}\right)^{2} \partial f_{0}}{p}\right)-\Gamma \tau p^{4} \frac{\partial f_{0}}{\partial p}\right)=Q \text {. }
\end{aligned}
$$

(Webb 1989; cf. also FR \& Mannheim 2002; Webb+ 20I 8)

Note: for steady shear flow profile $\vec{u}=u(r) \overrightarrow{e_{z}}$, fluid four acceleration $\dot{u}_{\beta}=0$ and divergence $\nabla_{\beta} u u^{\beta}=0$

shear term

Γ relativistic shear coefficient

Review

An Introduction to Particle Acceleration in Shearing Flows

Frank M. Rieger ${ }^{1,2(1)}$
1 ZAH, Institut für Theoretische Astrophysik, Heidelberg University, Philosophenweg 12, 69120 Heidelberg, Germany; f.rieger@uni-heidelberg.de or frank.rieger@mpi-hd.mpg.de
2 Max-Planck-Institut für Kernphysik, P.O. Box 103980, 69029 Heidelberg, Germany

Received: 15 August 2019; Accepted: 6 September 2019; Published: 10 September 2019

Abstract

Shear flows are ubiquitously present in space and astrophysical plasmas. This paper highlights the central idea of the non-thermal acceleration of charged particles in shearing flows and reviews some of the recent developments. Topics include the acceleration of charged particles by microscopic instabilities in collisionless relativistic shear flows, Fermi-type particle acceleration in macroscopic, gradual and non-gradual shear flows, as well as shear particle acceleration by large-scale velocity turbulence. When put in the context of jetted astrophysical sources such as Active Galactic Nuclei, the results illustrate a variety of means beyond conventional diffusive shock acceleration by which power-law like particle distributions might be generated. This suggests that relativistic shear flows can account for efficient in-situ acceleration of energetic electrons and be of relevance for the production of extreme cosmic rays.

Keywords: shearing flows; relativistic outflows; AGN jets; particle transport; acceleration

1. Introduction

Shear flows are naturally expected in a variety of astrophysical environments. Prominent examples include the rotating accretion flows around compact objects and the relativistic outflows (jets) in gamma-ray bursts (GRBs) or Active Galactic Nuclei (AGN) [1]. On conceptual grounds the jets in AGN are expected to exhibit some internal velocity stratification from the very beginning, with a black hole ergo-spheric driven, highly relativistic (electron-positron) flow surrounded by a slower

\mathbb{C} galaxies

Review

An Introduction to Particle Acceleration in Shearing Flows

Frank M. Rieger ${ }^{1,2}$ (이
1 ZAH, Institut für Theoretische Astrophysik, Heidelberg University, Philosophenweg 12, 69120 Heidelberg, Germany; f.rieger@uni-heidelberg.de or frank.rieger@mpi-hd.mpg.de
2 Max-Planck-Institut für Kernphysik, P.O. Box 103980, 69029 Heidelberg, Germany

Received: 15 August 2019; Accepted: 6 September 2019; Published: 10 September 2019

Abstract

Shear flows are ubiquitously present in space and astrophysical plasmas. This paper highlights the central idea of the non-thermal acceleration of charged particles in shearing flows and reviews some of the recent developments. Topics include the acceleration of charged particles by microscopic instabilities in collisionless relativistic shear flows, Fermi-type particle acceleration in macroscopic, gradual and non-gradual shear flows, as well as shear particle acceleration by large-scale velocity turbulence. When put in the context of jetted astrophysical sources such as Active Galactic Nuclei, the results illustrate a variety of means beyond conventional diffusive shock acceleration by which power-law like particle distributions might be generated. This suggests that relativistic shear flows can account for efficient in-situ acceleration of energetic electrons and be of relevance for the production of extreme cosmic rays.

Keywords: shearing flows; relativistic outflows; AGN jets; particle transport; acceleration

1. Introduction

Shear flows are naturally expected in a variety of astrophysical environments. Prominent examples include the rotating accretion flows around compact objects and the relativistic outflows (jets) in gamma-ray bursts (GRBs) or Active Galactic Nuclei (AGN) [1]. On conceptual grounds the jets in AGN are expected to exhibit some internal velocity stratification from the very beginning, with a black hole ergo-spheric driven, highly relativistic (electron-positron) flow surrounded by a slower

Kinetic/PIC:

Alves, Grismayer+, Liang+, Sironi+... turbulence:
Bykov \& Toptygin, Ohira...

On electron shear acceleration in large-scale jets

Simplified leaky-box model for shear acceleration

$$
\frac{\partial f}{\partial t}=\frac{1}{p^{2}} \frac{\partial}{\partial p}\left(p^{2} D_{p} \frac{\partial f}{\partial p}\right)-\frac{f}{\tau_{\mathrm{esc}}}
$$

(FR \& Duffy 2019)

Momentum-diffusion: $\quad D_{p}=\Gamma p^{2} \tau_{s} \propto p^{2+\alpha}$ mean free path: $\lambda=c \tau_{s} \propto p^{\alpha}$
[$\alpha=1 / 3$ for Kolmogorov]
Escape time:

$$
\tau_{\mathrm{esc}}(p) \simeq \frac{(\Delta r)^{2}}{2 \kappa(p)} \propto p^{-\alpha}
$$

$$
\Gamma=\left(c^{2} / 15\right) \gamma_{b}(r)^{4}(d \beta / d r)^{2}
$$

Power-law solution:

$$
f(p)=f_{0} p^{-s}
$$

- PL index s sensitive to maximum flow speed
- only for relativistic flow speeds is classical index $s=3+\alpha$ obtained.

Radiative-loss-limited electron acceleration in mildly relativistic flows

Ansatz: Fokker-Planck equation for $\mathrm{f}(\mathrm{t}, \mathrm{p})$ incorporating acceleration by stochastic and shear, and losses due to synchrotron and escape for cylindrical jet.

Parameters I: $B=3 \mu G, v_{j, \max } \sim 0.4 c, r_{j} \sim 30 \mathrm{pc}, \beta_{\mathrm{A}} \sim 0.007, \Delta r \sim r_{j} / 10$,
mean free path $\lambda=\xi^{-1} r_{L}\left(r_{L} / \Lambda_{\max }\right)^{1-q} \propto \gamma^{2-q, q=5 / 3}$ (Kolmogorov), $\xi=0.1$

Radiative-loss-limited electron acceleration in mildly relativistic flows

(Liu, FR \& Aharonian 20I7)

Ansatz: Fokker-Planck equation for $\mathrm{f}(\mathrm{t}, \mathrm{p})$ incorporating acceleration by stochastic and shear, and losses due to synchrotron and escape for cylindrical jet.

- from 2nd Fermi to shear...
- electron acceleration beyond $\gamma \sim 10^{8}$ possible
- formation of multi-component particle distribution
- incorporation of escape softens the spectrum

Parameters I: $B=3 \mu G, v_{j, \max } \sim 0.4 c, r_{j} \sim 30 \mathrm{pc}, \beta_{A} \sim 0.007, \Delta r \sim r_{j} / l 0$, mean free path $\lambda=\xi^{-1} r_{L}\left(r_{L} / \Lambda_{\max }\right)^{1-q} \propto \gamma^{2-q, q=5 / 3}$ (Kolmogorov), $\xi=0.1$
(cf .also FR \& Duffy 2019, 2022; Tavecchio 202I)

Radiative-loss-limited electron acceleration in mildly relativistic flows

(Liu, FR \& Aharonian 20I7)

Ansatz: Fokker-Planck equation for $\mathrm{f}(\mathrm{t}, \mathrm{p})$ incorporating acceleration by stochastic and shear, and losses due to synchrotron and escape for cylindrical jet.

- from 2nd Fermi to shear...
- electron acceleration beyond $\gamma \sim 10^{8}$ possible
- formation of multi-component particle distribution
- incorporation of escape softens the spectrum
caveat: simplification of spatial transport; in general, high jet speeds needed.
(cf .also FR \& Duffy 2019, 2022; Tavecchio 202I)

Radiative-loss-limited electron acceleration in mildly relativistic flows

On continuous shear acceleration in the kpc-scale jet of Cen A

Centaurus A

(Wang, Reville, Liu, FR \& Aharonian 202I)

- SED reproduction with shearrelated broken power-law \& shock-accelerated seeds
- Kolmogorov turbulence description $\lambda \propto \gamma^{1 / 3}$
- quasi-linear velocity shear
- parameters: $\Delta \mathrm{r}=100 \mathrm{pc}$, $B=17 \mu \mathrm{G}, \beta_{0}=0.67$
- electron acceleration up to $\gamma \approx 10^{8}$
- estimated (kinetic) jet power $\mathrm{L}_{\mathrm{j}} \sim 4 \times 10^{42} \mathrm{erg} / \mathrm{s}$

Developments I

Characterising velocity shears in large-scale jets (Wang, Reville, Mizuno, FR \& Aharonian 2023)

- employ 3D relativistic MHD jet simulations (PLUTO) for $v_{j} / c \in[0.6,0.99]$
- examine sheath formation in kinetically dominated jets (KHI) with $0.002<\sigma<0.2$
- study shear flow profile \& turbulence spectrum for particle acceleration...
- typically $W_{\text {sh }} / R_{j} \sim 1 / 4-1 / 2$ (transition stage) and ~//2-4/5 (deep saturation)...
- Kolmogorov-type (q ~ 5/3) turbulence spectra...

Developments I

Characterising velocity shears in large-scale jets (Wang, Reville, Mizuno, FR \& Aharonian 2023)

- employ 3D relativistic MHD jet simulations (PLUTO) for $v_{j} / c \in[0.6,0.99]$
- examine sheath formation in kinetically dominated jets (KHI) with $0.002<\sigma<0.2$
- study shear flow profile \& turbulence spectrum for particle acceleration...
- typically $W_{\text {sh }} / R_{j} \sim 1 / 4-1 / 2$ (transition stage) and ~//2-4/5 (deep saturation)...
- Kolmogorov-type (q ~ 5/3) turbulence spectra...

jet structure and KHI evolution

(azimuthally) averaged flow velocity profiles

Developments II

On continuous electron acceleration in large-scale AGN jets (FR \& Duffy 2022)

Solve full PTE for cylindrical shear flow
without radiative losses

- at ultra-relativistic flow speeds, universal PL index recovered:

$$
f \propto p^{-s} \text { with } s \rightarrow(3+\alpha)
$$

- at mildly relativistic flow speeds, PL index gets softer \& becomes sensitive to flow profile
- Ist-order FP-type approximation possible...

Developments II

On continuous electron acceleration in large-scale AGN jets (FR \& Duffy 2022)

Solve full PTE for cylindrical shear flow
without radiative losses

- at ultra-relativistic flow speeds, universal PL index recovered:
$f \propto p^{-s}$ with $s \rightarrow(3+\alpha)$
- at mildly relativistic flow speeds, PL index gets softer \& becomes sensitive to flow profile
- Ist-order FP-type approximation possible...
allows to constrain flow profile through observed PL index....

Interlude - On highly magnetized shear flows...

Example: 2D PIC of relativistic ($\left.\Gamma_{y} \sim 1.3-3\right)$ highly-magnetized $(\sigma \sim 100) \mathbf{e}^{+} \mathbf{e}^{-}-j e t$ and stationary, weakly-magnetized ($\sigma \sim 0.1$) ambient e-p - plasma (Sironi+202।)

- focus on wide (r) shear layers with $\Delta \gg c / \omega_{p}$ (typical model setup: $\Delta=64 c / \omega_{p}$)
- initialize with out-plane $\mathrm{B}_{z}\left(\sigma_{z} \sim 90\right)$ and in-plane $\mathrm{B}_{y}\left(\sigma_{y} \equiv B_{j, y}^{2} / 4 \pi n_{0} m_{e} c^{2} \simeq 7\right)$
- as a result of KHI, field lines get twisted and significant $B_{x}\left(\sigma_{x} \sim 4\right)$ develops...

Interlude - On highly magnetized shear flows...

Example: 2D PIC of relativistic ($\left.\Gamma_{y} \sim 1.3-3\right)$ highly-magnetized $(\sigma \sim 100) \mathbf{e}^{+} \mathbf{e}^{-}-j e t$ and stationary, weakly-magnetized ($\sigma \sim 0.1$) ambient e-p - plasma (Sironi+202।)

- focus on wide(r) shear layers with $\Delta \gg c / \omega_{p}$ (typical model setup: $\Delta=64 c / \omega_{p}$)
- initialize with out-plane $\mathrm{B}_{\mathrm{z}}\left(\sigma_{z} \sim 90\right)$ and in-plane $\mathrm{B}_{y}\left(\sigma_{y} \equiv B_{j, y}^{2} / 4 \pi n_{0} m_{e} c^{2} \simeq 7\right)$
- as a result of KHI, field lines get twisted and significant $B_{x}\left(\sigma_{x} \sim 4\right)$ develops...

Interlude - On highly magnetized shear flows...

Example: 2D PIC of relativistic $\left(\Gamma_{y} \sim 1.3-3\right)$ highly-magnetized $(\sigma \sim 100) \mathbf{e}^{+} \mathbf{e}^{-}-$jet and stationary, weakly-magnetized ($\sigma \sim 0.1$) ambient e-p - plasma (Sironi+202I)

- focus on wide(r) shear layers with $\Delta \gg c / \omega_{p}$ (typical model setup: $\Delta=64 c / \omega_{p}$)
- initialize with out-plane $\mathrm{B}_{z}\left(\sigma_{z} \sim 90\right)$ and in-plane $\mathrm{B}_{y}\left(\sigma_{y} \equiv B_{j, y}^{2} / 4 \pi n_{0} m_{e} c^{2} \simeq 7\right)$
- as a result of KHI, field lines get twisted and significant $\mathrm{B}_{\mathrm{x}}\left(\sigma_{x} \sim 4\right)$ develops...
- electron acceleration in reconnection layers to $\gamma_{e} \sim 30 \Rightarrow$ seeds for further shear acceleration

shear \& magnetic field evolution
at $\omega_{p} t \simeq 10^{4}$

spatial dependence of electron spectrum

On UHECR acceleration in shearing large-scale AGN jets

On gradual shear in mildly relativistic, large-scale AGN jets

(FR \& Duffy 2019)

Figure 2. Allowed parameter range (shaded) for shear acceleration of CR protons to energies $E_{p}^{\prime}=10^{18} \mathrm{eV}$ for a particle mean free path $\lambda^{\prime} \propto p^{\prime \alpha}$ with $\alpha=1 / 3$ (corresponding to Kolmogorov type turbulence $q=5 / 3$). A flow Lorentz factor $\gamma_{b}\left(r_{0}\right)=3$ has been assumed.

Potential for UHECR acceleration:

need jet widths such as to
(I) laterally confine particles,
(2) beat synchrotron losses,
(3) operate within system lifetime

- expect KHI-shaped shear width $\Delta r>0.1 r_{j}$ (FR \& Duffy 202I)
- for protons $\sim 10^{18} \mathrm{eV}$ achievable in jets with relatively plausible parameters (i.e., lengths

$$
10 \mathrm{kpc}-\mathrm{I} \mathrm{Mpc}, \mathrm{~B} \sim[\mathrm{I}-\mathrm{I} 00] \mu \mathrm{G})
$$

- escaping CRs may approach $N(E) \propto E^{-1}$

$$
\left(\mathrm{t}_{\text {acc,shear }} \propto \gamma^{q-2}\right)
$$

On gradual shear in mildly relativistic, large-scale AGN jets

(FR \& Duffy 2019)

Figure 2. Allowed parameter range (shaded) for shear acceleration of CR protons to energies $E_{p}^{\prime}=10^{18} \mathrm{eV}$ for a particle mean free path $\lambda^{\prime} \propto p^{\prime \alpha}$ with $\alpha=1 / 3$ (corresponding to Kolmogorov type turbulence $q=5 / 3$). A flow Lorentz factor $\gamma_{b}\left(r_{0}\right)=3$ has been assumed.

$$
\left(t_{\text {acc,shear }} \propto \gamma^{q-2}\right)
$$

Potential for UHECR acceleration:

need jet widths such as to
(I) laterally confine particles,
(2) beat synchrotron losses,
(3) operate within system lifetime

- expect KHI-shaped shear width $\Delta r>0.1 r_{j}$ (FR \& Duffy 202I)
- for protons $\sim 10^{18} \mathrm{eV}$ achievable in jets with relatively plausible parameters (i.e., lengths

$$
10 \mathrm{kpc}-\mathrm{I} \mathrm{Mpc}, \mathrm{~B} \sim[1-100] \mu \mathrm{G})
$$

- escaping CRs may approach $N(E) \propto E^{-1}$
- proton acceleration to $\sim 10^{20} \mathrm{eV}$ in mildly relativistic jets appears quite restricted (cf. also Liu+ 20I7; Wang+202I; Webb+ 20I8, 2019)

On gradual shear in mildly relativistic, large-scale AGN jets

(FR \& Duffy 2019)

Figure 2. Allowed parameter range (shaded) for shear acceleration of CR protons to energies $E_{p}^{\prime}=10^{18} \mathrm{eV}$ for a particle mean free path $\lambda^{\prime} \propto p^{\prime \alpha}$ with $\alpha=1 / 3$ (corresponding to Kolmogorov type turbulence $q=5 / 3$). A flow Lorentz factor $\gamma_{b}\left(r_{0}\right)=3$ has been assumed.

$$
\left(\mathrm{t}_{\text {acc,shear }} \propto \gamma^{q-2}\right)
$$

caveat:

simplification of spatial transport

Potential for UHECR acceleration:

need jet widths such as to
(I) laterally confine particles,
(2) beat synchrotron losses,
(3) operate within system lifetime

- expect KHI-shaped shear width $\Delta r>0.1 r_{j}$ (FR \& Duffy 202I)
- for protons $\sim 10^{18} \mathrm{eV}$ achievable in jets with relatively plausible parameters (i.e., lengths

$$
10 \mathrm{kpc}-\mathrm{I} \mathrm{Mpc}, \mathrm{~B} \sim[\mathrm{I}-\mathrm{I} 00] \mu \mathrm{G})
$$

- escaping CRs may approach $N(E) \propto E^{-1}$
- proton acceleration to $\sim 10^{20} \mathrm{eV}$ in mildly relativistic jets appears quite restricted (cf. also Liu+ 2017; Wang+202I; Webb+ 2018, 2019)

On non-gradual shear in large-scale FR I type jets

Non-gradual shear particle acceleration:

entrainment \& recycling of GCR \& re-acceleration to 100 EeV in trans-relativistic jets (Kimura+ 2018):

- MC simulations \Rightarrow acceleration leads to hard spectrum for escaping $\mathrm{CR}\left(d N / d E \propto E^{-\alpha}, \alpha \leq 1\right)$
- more complex UHECR abundance due to injections at TeV-PeV energies, @ $\mathrm{E}_{\mathrm{inj}, \mathrm{i}}=15 \mathrm{Z}_{\mathrm{i}} \mathrm{TeV}$
- diffusion in cocoon (residence time) determines max. energy $\mathrm{E}_{\mathrm{i}, \max } \propto \mathrm{Z}_{\mathrm{i}}$
(via $t_{\text {acc }}=t_{\text {conf }}$, with cycle time in $t_{\text {acc }}$ dominated by $\lambda_{i, c o c}$ and "confinement" time by accelerator region $\sim \mathrm{R}_{\mathrm{jet}} / \mathrm{c}$)

Bohm diffusion $\lambda_{j} \sim r_{\text {L inside }} j e t$, in cocoon $\lambda_{\text {coc }} \propto(E / Z)^{2}$ at high energies (non-resonant scattering), and $\lambda_{\text {coc }} \propto(E / Z)^{1 / 3}$ at lower $\left(<5 \times 10^{17} \mathrm{eV}\right)$ energies (resonant scattering)
Model parameters: jet length $\mathrm{l}_{\mathrm{j}}=5 \mathrm{kpc}, \mathrm{R}_{\mathrm{jet}}=0.5 \mathrm{kpc}, \mathrm{B}_{\mathrm{j}}=300 \mu \mathrm{G}, \mathrm{B}_{\text {coc }}=3 \mu \mathrm{G}$, $v_{j}=0.7 \mathrm{c}, \mathrm{v}_{\text {exp, coc }}=3000 \mathrm{~km} / \mathrm{s}$, thin velocity shear of $0.0 \mathrm{I} \mathrm{R}_{\text {jet. }}$

On non-gradual shear in large-scale FR I type jets

(cf. also Ostrowski I990, I998; FR \& Duffy 2004)

Non-gradual shear particle acceleration:

entrainment \& recycling of GCR \& re-acceleration to 100 EeV in trans-relativistic jets (Kimura+ 2018):

- MC simulations \Rightarrow acceleration leads to hard spectrum for escaping $\mathrm{CR}\left(d N / d E \propto E^{-\alpha}, \alpha \leq 1\right)$
- more complex UHECR abundance due to injections at TeV-PeV energies, @ $\mathrm{E}_{\mathrm{inj}, \mathrm{i}}=15 \mathrm{Z}_{\mathrm{i}} \mathrm{TeV}$
- diffusion in cocoon (residence time) determines max. energy $\mathrm{E}_{\mathrm{i}, \text { max }} \propto \mathrm{Z}_{\mathrm{i}}$
(via $t_{\text {acc }}=t_{\text {conf }}$, with cycle time in $t_{\text {acc }}$ dominated by $\lambda_{i, c o c}$ and "confinement" time by accelerator region $\sim \mathrm{R}_{\mathrm{jet}} / \mathrm{c}$)

Bohm diffusion $\lambda_{j} \sim r_{\text {L inside }} j e t$, in cocoon $\lambda_{\text {coc }} \propto(E / Z)^{2}$ at high energies (non-resonant scattering), and $\lambda_{\text {coc }} \propto(E / Z)^{1 / 3}$ at lower $\left(<5 \times 10^{17} \mathrm{eV}\right)$ energies (resonant scattering)
Model parameters: jet length $\mathrm{l}_{\mathrm{j}}=5 \mathrm{kpc}, \mathrm{R}_{\mathrm{jet}}=0.5 \mathrm{kpc}, \mathrm{B}_{\mathrm{j}}=300 \mu \mathrm{G}, \mathrm{B}_{\text {coc }}=3 \mu \mathrm{G}$, $v_{j}=0.7 c, v_{\text {exp, coc }}=3000 \mathrm{~km} / \mathrm{s}$, thin velocity shear of $0.0 \mid R_{\text {jet. }}$

On non-gradual shear in large-scale FR I type jets

(cf. also Ostrowski I990, I998; FR \& Duffy 2004)

Non-gradual shear particle acceleration:

entrainment \& recycling of GCR \& re-acceleration to 100 EeV in trans-relativistic jets (Kimura+ 2018):

- MC simulations \Rightarrow acceleration leads to hard spectrum for escaping $\mathrm{CR}\left(d N / d E \propto E^{-\alpha}, \alpha \leq 1\right)$
- more complex UHECR abundance due to injections at TeV-PeV energies, @ $\mathrm{E}_{\mathrm{inj}, \mathrm{i}}=\mathrm{I} 5 \mathrm{Z}_{\mathrm{i}} \mathrm{TeV}$
- diffusion in cocoon (residence time) determines max. energy $\mathrm{E}_{\mathrm{i}, \max } \propto \mathrm{Z}_{\mathrm{i}}$
(via $t_{\text {acc }}=t_{\text {conf }}$, with cycle time in $t_{\text {acc }}$ dominated by $\lambda_{i, c o c}$ and "confinement" time by accelerator region $\sim \mathrm{R}_{\mathrm{jet}} / \mathrm{c}$)

Bohm diffusion $\lambda_{j} \sim r_{\text {L inside }} j e t$, in cocoon $\lambda_{\text {coc }} \propto(E / Z)^{2}$ at high energies (non-resonant scattering), and $\lambda_{\text {coc }} \propto(E / Z)^{1 / 3}$ at lower $\left(<5 \times 10^{17} \mathrm{eV}\right)$ energies (resonant scattering)
Model parameters: jet length $\mathrm{l}_{\mathrm{j}}=5 \mathrm{kpc}, \mathrm{R}_{\mathrm{jet}}=0.5 \mathrm{kpc}, \mathrm{B}_{\mathrm{j}}=300 \mu \mathrm{G}, \mathrm{B}_{\text {coc }}=3 \mu \mathrm{G}$, $v_{j}=0.7 c, v_{\text {exp, coc }}=3000 \mathrm{~km} / \mathrm{s}$, thin velocity shear of $0.0 \mid R_{\text {jet. }}$

On non-gradual shear in large-scale FR I type jets

(cf. also Ostrowski I990, I998; FR \& Duffy 2004)

Non-gradual shear particle acceleration:

entrainment \& recycling of GCR \& re-acceleration to 100 EeV in trans-relativistic jets (Kimura+ 2018):

- MC simulations \Rightarrow acceleration leads to hard spectrum for escaping $\mathrm{CR}\left(d N / d E \propto E^{-\alpha}, \alpha \leq 1\right)$
- more complex UHECR abundance due to injections at TeV-PeV energies, @ $\mathrm{E}_{\mathrm{inj}, \mathrm{i}}=\mathrm{I} 5 \mathrm{Z}_{\mathrm{i}} \mathrm{TeV}$
- diffusion in cocoon (residence time) determines max. energy $\mathrm{E}_{\mathrm{i}, \text { max }} \propto \mathrm{Z}_{\mathrm{i}}$
(via $t_{\text {acc }}=t_{\text {conf }}$, with cycle time in $t_{\text {acc }}$ dominated by $\lambda_{i, c o c}$ and "confinement" time by accelerator region $\sim \mathrm{R}_{\mathrm{jet}} / \mathrm{c}$)

Bohm diffusion $\lambda_{j} \sim r_{\text {L inside }} j$ jet, in cocoon $\lambda_{\text {coc }} \propto(E / Z)^{2}$ at high energies (non-resonant scattering), and $\lambda_{\text {coc }} \propto(E / Z)^{1 / 3}$ at lower $\left(<5 \times 10^{17} \mathrm{eV}\right)$ energies (resonant scattering)

caveat:

all sources assumed to be the same, sensitive to turbulence description, narrow shear layer...

On cosmic-ray acceleration in powerful large-scale jets

for injected $\mathrm{rL}_{\mathrm{L}}=0.075 \mathrm{R}_{\mathrm{jet} ;} B\left(r \geq R_{\text {jet }}\right) \propto 1 / r ; B(z) \propto 1 / z$
Cumulative distribution of energy gains: $\eta=\frac{\tilde{\epsilon}}{N} \frac{d N}{d \tilde{\epsilon}}$ with $\tilde{\epsilon} \simeq E_{f} / E_{i}$

"Non-gradual" shear particle acceleration:
recycling of GCR in relativistic ($\Gamma \sim 10$) large-scale jets (Mbarek \& Caprioli 2019, 202I):

- Γ^{2} boost possible \Rightarrow only few cycles ('espresso shots') needed
- following test particles in simulated MHD jets (3d, PLUTO)
- particle injection spectrum $d N_{i} / d E_{i} \propto E_{i}^{-1}$, spanning gyro-radii range $r_{L, i} \sim\left(10^{-4}-10\right) R_{\text {jet }}$
- modelling effect of unresolved turbulence via gyro-dependent diffusion where $D=\kappa r_{L} c / 3$ with $\kappa=1,10,100,1000 \Rightarrow$ spectral hardening $d N / d E \propto E^{-\alpha}, \alpha \sim 0.5$ for low $\kappa \ldots$

On cosmic-ray acceleration in powerful large-scale jets

for injected $\mathrm{rLL}_{\mathrm{i}}=0.075 \mathrm{R}_{\text {jet; }} B\left(r \geq R_{\text {jet }}\right) \propto 1 / r ; B(z) \propto 1 / z$
Cumulative distribution of energy gains: $\eta=\frac{\tilde{\epsilon}}{N} \frac{d N}{d \tilde{\epsilon}}$ with $\tilde{\epsilon} \simeq E_{f} / E_{i}$

for particle injection spectrum with $r_{L} \sim(0.0002-0.2) R_{\text {jet }}$
caveat:
jet resolution; gyro-dependent diffusion; requires strongly magnetized ($\sigma \sim 0.6$),
high-power jets ($\mathrm{L} \gtrsim 10^{44} \mathrm{erg} / \mathrm{s}$)..
"Non-gradual" shear particle acceleration:
recycling of GCR in relativistic ($\Gamma \sim 10$) large-scale jets (Mbarek \& Caprioli 2019, 202I):

- Γ^{2} boost possible \Rightarrow only few cycles ('espresso shots') needed
- following test particles in simulated MHD jets (3d, PLUTO)
- particle injection spectrum $d N_{i} / d E_{i} \propto E_{i}^{-1}$, spanning gyro-radii range $r_{L, i} \sim\left(10^{-4}-10\right) R_{\text {jet }}$
- modelling effect of unresolved turbulence via gyro-dependent diffusion where $D=\kappa r_{L} c / 3$ with $\kappa=1,10,100,1000 \Rightarrow$ spectral hardening $d N / d E \propto E^{-\alpha}, \alpha \sim 0.5$ for low $\kappa . .$.

Resolution of jet simulations $\sim R_{\text {jet }} / I 0$
Model reference parameters: $R_{\text {jet }}=100 \mathrm{pc}, \mathrm{B}_{\mathrm{j}}=100 \mu \mathrm{G}, \Gamma_{0}=7$
universe

Review

Active Galactic Nuclei as Potential Sources of Ultra-High Energy Cosmic Rays

Frank M. Rieger ${ }^{1,2(0)}$

1 Institute for Theoretical Physics (ITP), Heidelberg University, Philosophenweg 12, 69120 Heidelberg, Germany; f.rieger@uni-heidelberg.de
2 Max-Planck-Institut für Kernphysik (MPIK), P.O. Box 103980, 69029 Heidelberg, Germany
Abstract: Active Galactic Nuclei (AGNs) and their relativistic jets belong to the most promising class of ultra-high-energy cosmic ray (UHECR) accelerators. This compact review summarises basic experimental findings by recent instruments, and discusses possible interpretations and astrophysical constraints on source energetics. Particular attention is given to potential sites and mechanisms of UHECR acceleration in AGNs, including gap-type particle acceleration close to the black hole, as well as first-order Fermi acceleration at trans-relativistic shocks and stochastic shear particle acceleration in large-scale jets. It is argued that the last two represent the most promising mechanisms given our current understanding, and that nearby FR I type radio galaxies provide a suitable environment for UHECR acceleration.

Keywords: ultra high energy cosmic rays; particle acceleration; radio Galaxies; relativistic jets

1. Introduction

The energy spectrum of cosmic rays runs over more than ten orders of magnitudes, from GeV energies to $\sim 10^{20} \mathrm{eV}$. While supernova remnants are believed to be the most probable sources of cosmic rays at lower energies (i.e., up to the 'knee' at $\sim 3 \times 10^{15} \mathrm{eV}$) [1,2], the origin of ultra-high-energy cosmic rays (UHECRs, $E \geq 10^{18} \mathrm{eV}=1 \mathrm{EeV}$) is much less understood. While thought to be of extragalactic origin [3], the real astrophysical sources are still to be deciphered. Possible candidate sources include Active Galactic Nuclei (AGNs)

Summary

Particle Acceleration in Astrophysical Shear Flows:

- needs relativistic flow speeds to work efficiently (hard spectra)
- depends on seed injection for electrons (\hookrightarrow e.g., shocks)
represent a 'natural' mechanism in AGN jets
- origin of ultra-relativistic electrons \& extended emission
- multiple power-law formation possible...

Outlook \& tasks ahead:

- incorporation in jet simulations...
- UHECR characteristics for AGNs...
- and many more...

Summary

Particle Acceleration in Astrophysical Shear Flows:

- needs relativistic flow speeds to work efficiently (hard spectra)
- depends on seed injection for electrons (\neg e.g., shocks)

represent a 'natural' mechanism in AGN jets
- origin of ultra-relativistic electrons \& extended emission - multiple power-law formation possible...

- spectral shape (power-law index) indicative of flow profile... - large-scale AGN jets as possible UHE accelerators....

Outlook \& tasks ahead:

- incorporation in jet simulations...
- UHECR characteristics for AGNs...
- and many more...

Thank you!
 \&

Questions?

[^0]: Parameters: ECBPL: $\boldsymbol{\alpha}_{1}=2.30, \boldsymbol{\alpha}_{2}=3.85, \gamma_{\mathrm{b}}=1.4 \times 10^{6}, \gamma_{\mathrm{c}}=10^{8}, \mathrm{~B}=23 \mu \mathrm{G}, \mathrm{W}_{\text {tot }}=4 \times 10^{53} \mathrm{erg}$

