Radio Detection of Astrophysical Neutrinos

Fowards finding the sources of UHECRs

* *

Scientific motivation

Where are ultra-high energy cosmic rays from?

Does the neutrino flux continue to higher energies?

How to address this?

Measure cosmic rays with better precision

The story of the two effects and the refractive index

- Radio emission of showers can be explained from first principles and three aspects
 - Magnetic field: Geomagnetic field, Lorentz-force
 - Charge imbalance: Particle Physics processes
 - Index of refraction: Relativistic compression

Air showers

Are we really sure that we have understood this?

Quite a lot of experimental evidence:

DESY. Nelles, CDY Seminar 2022

How do we know this?

- The key evidence: Polarization
 - Geomagnetic effect: Lorentz-force, polarization orthogonal to shower axis and magnetic field
 - Askaryan effect: Polarization points towards shower axis

How do we know this?

- The key evidence: Polarization
 - The two processes stem from slightly different heights
 - Time difference = phase offset between two emission components
 - Leads to circular polarization

- Emission is due to both geomagnetic emission (dominant in air) and Askaryan emission
- Geosynchrotron radiation is a correction of < 1% to these effects

There is also a Cherenkov ring but not Cherenkov emission

- The emission is only strong if it arrives coherently (at the same time for all frequencies, high frequencies more pronounced effect)
- At the Cherenkov angle, an enhancement is seen, in air this is very close to the shower axis
- Same effect for showers in ice, but here Cherekov angle ~ 52 degrees, so it looks much more like "Cherenkov radiation", but it is not
- If one had the same shower development in vacuum, it would still radiate

We know all this from air showers

Are air showers still interesting?

- Air shower measurements were used to:
 - Provide the proof-of-principle for radio detection of particle showers
 - Confirm the emission mechanisms down to subtle features, agreement with Monte Carlo simulations astonishingly good
 - Develop methods of how to reconstruct data, remove the contribution of noise, understand antenna theory for impulsive events, ...
- But a technique is only useful, if it can also contribute to advancing the astroparticle science case

What is in it for the science?

- Radio detection provides and excellent energy estimator
- Calculation from first principles
- Very little systematic uncertainties(< 5%) in method

RLANGEN CENTRE

11

M. Gottowik et al. Astropart. Phys. 103 (2018) 87

What is in it for the science?

- A radio energy estimate could reduce systematic uncertainties between observatories
- Long standing issue in interpreting cosmic-ray data between observatories:

Remove ad-hoc scaling, which has been impacting theory

12

What is in it for the science?

• Radio pattern is very sensitive to X_{max} = particle type

- Tension to Auger measurements, but agreement with Northern hemisphere experiments Johannes Schulz Radboud University Nijmegen
- Potential for radio measurement
 on Southern hemisphere

DESY. Nelles, CDY Seminar 2022

D geo / m

Detecting radio emission

Experimental challenges and opportunities

- Search for a very broad-band • nanosecond scale pulse
- Detectable typically at shower energies > ٠ 10¹⁵ eV, i.e. rare signal
- Extreme requirements for electronics:
 - Sampling speeds of at least 200 • MHz, double-buffering
 - Needs full waveform sampling for ٠ frequency content and polarization
 - Preferably stations run independently • at very low power
- Duty-cycle (almost) independent of weather

1.0

Time (µs)

10

-10

-20

-30L

0.5

10 - 90 MHz

1.5

Experimental challenges and opportunities

ARIANNA Coll. (AN)., Astropart. Phys. 90 (2017) 50

- Unfortunately, a lot of things make radio pulses
- Self-triggering and event identification remain a challenge
- New opportunities in modern data analysis methods

Neutrinos

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Why it is interesting for neutrinos?

- Any shower containing an electro-magnetic cascade creates radio emission
- A similar experimental approach for:
 - air showers from cosmic rays
 - air showers from neutrino induced tau decays
 - in ice showers following a neutrino interaction

- But something denser than air is needed to provide a decent target
- Ice: kilometer-scale attenuation length

DESY. Nelles, CDY Seminar 2022

time (ns)

Radio emission of showers in dense media

[m//m]

A difference between detecting cosmic rays and neutrinos

- Showers in media are smaller, i.e. more intense charge imbalance and less influence of geomagnetic field
- Higher frequencies due to smaller size
- Index of refraction >> 1, Cherenkov cone, travel on nonstraight lines with changing n
- Ice attenuates the signal, air does not

*All results powered by NuRadioMC https://github.com/nu-radio/NuRadioMC AN and group: core development team

Tau neutrinos emerging from the Earth

- Looking at tau's emerging from the Earth, creates large effective volumes for neutrinos, radio emission is (almost) not attenuated in air
- Radio detectors probably most effective, when they use mountainous terrain
- Have to exploit economies of scale for very cheap antenna stations
- Largest challenge: suppress (human-made) background close to the horizon
- A couple of projects on-going or proposed, e.g. GRAND, BEACON, TARGOE (radio), TAMBO (water-Cherenkov), TRINITY (air-Cherenkov), ...

Looking for air showers but stemming from neutrinos

- GRAND: concept: 200'000 radio antennas over 200'000 km^{2,} i.e.~ 20 hotspots of 10'000 antennas over favorable sites in China and worldwide, viewing shower from 'the side'
 - Current Status: GRANDProto300, hardware developed, but site search delayed (COVID), Staged approach: GRAND 10k (~ 2025), GRAND 200k
- BEACON (or TAROGE) concept: 100-1000 stations with ~10 antennas each, viewing shower from top of mountain

GRAND HorizonAntenna, fully

GRAND whitepaper arXiv:1810.09994

Neutrino interactions in ice

- Cold polar ice has attenuation length in the order of kilometers
- One radio station can typically monitor 1 km³ of ice (= the size of IceCube)
- Detection threshold around 10 PeV shower energy, determined not by array spacing but pulse height above thermal noise
- > 100 km³ needed to obtain sensitivity for cosmogenic neutrinos, neutrinos from UHECR with CMB, if very few protons at highest energies
- Human-made background typically smaller in polar regions, event identification and self-trigger less challenging

 Many early experiments: RICE, ARA, ARIANNA, ...

 $\nu_{e,\mu,\tau}$

and of course, ANITA

Results so far

- Neutrino limits from radio detection of neutrinos towards high energies, not competitive to IceCube below 10¹⁰ GeV
- So far: experiments focussed on proof-of-concept, reconstruction and performance

- Exception: ANITA I-III: Mystery events behave like cosmic ray signals, but show signal polarization/polarity like neutrino from deep trough Earth
 - If truly neutrino: disagreement with IceCube limits, difficult to reconcile with Standard Model
 - Other explanations offered: ice, background, etc.
 - ANITA IV: again 4 events with inconsistent polarity, but near horizon, nothing 'mysteriously' steep <u>arXiv:2008.05690</u>
 - Follow-up experiment with better low energy sensitivity and more exposure: PUEO balloon <u>arXiv:2010.02892</u>

Radio Neutrino Observatory Greenland (RNO-G)

- RNO-G: Construction started in 2021
- 35 stations as first production scale implementation for neutrino detection
- Deployment in Greenland allows for fast development turn-around
- Largest yearly neutrino sensitivity > 10 PeV
- Lead institutions: Chicago, DESY, Brussels, PennState, Madison
- Concept and design paper: *JINST* 16 (2021) 03, P03025, <u>arXiv:2010.12279</u>

25

LANGEN CENTRE

OR ASTROPARTICLE

RNO-G Status

Where do we stand?

- 2021: Installed first 3 stations (with very little lab testing due to COVID)
- 2022: Installed 4 additional stations, upgraded existing ones, started to install wind-turbines

I. Plaisier, PhD student @ FAU

27

RNO-G Status

What is still to do?

- 2023: Upgrade stations to 'final' version of hardware, install remaining wind-turbines, add cosmic-ray verification set-up
- 2024 + 2025 + 2026: Install 10 (+/2) stations each year
- Perform ice calibration measurements and potentially install enhancements

 Operate at least until 2031 (or until IceCube-Gen2 supersedes RNO-G)

Reconstructing the energy

- Radio detection a mixture of "radio interferometry" in a medium and particle physics
- Ingredients: vertex distance (scaling with distance and attenuation), signal fluency (scales quadratically with energy), neutrino inelasticity
- Energy resolution very good on shower basis, dominating uncertainty is neutrino inelasticity

RNO-G, Eur. Phys. J. C (2022) 82: 147

DESY. Nelles, CDY Seminar 2022

RLANGEN CENTRE OR ASTROPARTICLE

Reconstructing the arrival direction

- A signal contains:
 - Timing, i.e. signal arrival direction
 - Frequency content, i.e. angle to Cherenkov angle
 - Polarization, i.e. radial angle on Cherenkov cone
- All need to be combined for arrival direction
- Working towards multimessenger astronomy with UHE neutrinos

RNO-G

The science

- RNO-G 'big' enough to have a reasonable chance to detect a continuation of the diffuse IceCube neutrino flux
- Somewhat optimistic chance to detect transient events, nice complimentary Northern hemisphere sensitivity

- Discovering > PeV neutrinos would be simply exciting
- Absence problematic for theory

DESY. Nelles, CDY Seminar 2022

Neutrino sensitivity

- RNO-G sensitive to all 3 neutrino flavors (NC and CC, > 10 PeV)
- 20% of all detections are from interactions of secondary muons or taus
- Flavor-tagging relevant for both particle physics and astrophysics

1017

 τ energy [eV]

10¹⁸

 10^{19}

104

 10^{3}

10²

10¹ 10⁰

10⁻¹ 10⁻²

10

 10^{15}

PN hads

e⁺e⁻ decav π^{-,0,+}

decav hads

decay e^{-, +}

 10^{16}

Number of showers per lepton

Where to after? IceCube-Gen2

IceCube-Gen2

- Baseline design for IceCube-Gen2 includes a large radio array
- Experimental design based on RNO-G technology
- 'Roughly' a factor 10 more stations than RNO-G
- Collaboration is currently defining details in Technical Design Report

Radip Array fort Gen avorably reviewed in Astro 2020 US Decadal Survey

IceCube-Gen2

"IceCube-Gen2 will play an essential role in shaping the new era of multi-messenger astronomy, fundamentally advancing our knowledge of the high-energy universe."

> IceCube-Gen2: The Window to the Extreme Universe , https://arxiv.org/abs/2008.04323, J.Phys.G 48 (2021) 6, 060501

Conclusions

How to tackle the puzzle of the sources of ultra-high energy cosmic rays?

• Neutrinos:

- Many ideas to go to > PeV energies using radio
- In-ice technology now mature, RNO-G first large scale implementation at > PeV energies
- Next step: IceCube-Gen2 neutrino physics at all astrophysical energies with > factor 10 improved sensitivity

