

CDY seminar — 21 September, 2022

Supernova remnants as Cosmic Rays Accelerators: from the Milky Way to starburst galaxies Giovanni Morlino INAF/Oss. Astrofisico di Arcetri Firenze ITALY

Outline

SNRs in the context of particle acceleration

- * The Galactic context
 - * Isolated SNR

 - Star clusters:
 Stellar winds
 Interacting SNRs
- * The extra-galactic context
 - * SNRs and starburst nuclei
 - * Winds from starburst nuclei
 - * The multi-messenger prospective

G. Morlino, CDY talk, 21 Sept. 2022

Requirements

- Energetics:
- Spectrum:
- Maximum energy:
- Anisotropy:

- ~ 10^{40} erg/s $Q_{\text{inj}} \propto E^{-2.3}$ $E_{\max,p} \gtrsim 10^{15} \text{ eV}$
- $\sim 10^{-3} @ 10 \,\mathrm{TeV}$
- Composition: few anomalies w.r.t. Solar
 Electrons: energetically subdominant but spectrum significantly steeper than *p*

Extra-galactic component

The Galactic context

The most popular scenario: DSA@SNR shocks

* Why supernova remnant are so popular?

- 1. Enough power to sustain the CR flux (enough ~10% of the explosion energy)
- 2. Spatial distribution of SNR compatible with CR distribution (inferred from diffuse gamma-ray emission)
- 3. Enough sources to explain the small anisotropy:

$$N(\langle d, E \rangle) \sim R_{SN} (d/R_d)^2 \tau_{esc}(E) = \frac{1}{100yr} \left(\frac{5kpc}{15kpc}\right)^2 2 Myr \simeq 7000$$

- 5. Presence of non thermal emission from SNRs
- 6. A well developed theory for particle acceleration: <u>Diffusive Shock Acceleration</u>

G. Morlino, CDY talk, 21 Sept. 2022

The most popular scenario: DSA@SNR shocks

* Why supernova remnant are so popular?

- 1. Enough power to sustain the CR flux (enough ~10% of the explosion energy)
- 2. Spatial distribution of SNR compatible with CR distribution (inferred from diffuse gamma-ray emission)
- 3. Enough sources to explain the small anisotropy:

$$N(\langle d, E \rangle) \sim R_{SN} (d/R_d)^2 \tau_{esc}(E) = \frac{1}{100yr} \left(\frac{5kpc}{15kpc}\right)^2 2 Myr \simeq 7000$$

- 5. Presence of non thermal emission from SNRs
- 6. A well developed theory for particle acceleration: <u>Diffusive Shock Acceleration</u>

* However

- No evidence of acceleration beyond ~ 100 TeV even in very young SNRs
- From theory only very powerful and rare SNRs can reach PeV
- Anomalous CR composition cannot be easily explained
- Spectral anomalies (p, He, CNO have different slopes)
- Unclear explanation for the electron spectrum

Where does the acceleration occurs?

- Repeated multiple scatterings with magnetic turbulence produce small energy gain at each shock crossing (*I order Fermi acceleration*)
- Balance between energy gain and escape probability results into a featureless power-law spectrum

The non-linear fashion of DSA

What makes DSA a non-trivial theory is the non-linearity due to CR feedback onto the shock dynamics

The key aspect of the whole process is the magnetic field amplification

PIC simulation of DSA

[Caprioli & Spitkovsky, ApJ 2014]

Particle spectrum downstream at different times

plasma density

- A nice confirmation of DSA * predictions comes from particle in cell (PIC) simulations
 - Large efficiency ~ 10-20%
 - Spectrum ~ p^{-4} (~ $E^{-1.5}$ at nonrelativistic energies)
 - CRs generate their own magnetic turbulence
- However, PICs can only simulate the * beginning of the acceleration process (small dynamical range:

 $E_{\rm max} \ll 1 \,{\rm GeV})$

Gamma-ray emission from SNRs: what's wrong with DSA?

Collection of Gamma-ray emission from shell-type SNRs

R Funk S. 2015. Annu. Rev. Nucl. Part. Sci. 65:245–77 **Prediction from test particle theory, i.e.** $n(E) \propto E^{-2}$

How to get slope different from 2?

- Modification to test-particle DSA (e.g. scattering centres with non-negligible speed)
- Environmental conditions (clumpy media)
- Particle escape (for middle-age SNRs)
- etc...

	Very young (~300 yr)	Young (~2000 yr)	Middle-age (~10 ⁴ yr)
Emission type	hadronic	unclear (had./lept.)	hadronic
spectrum	soft (~E-2.3)	hard (~E ^{-1.5} - E ^{-1.8})	soft (~E-3)
E _{max} (protons)	10-100 TeV	10-100 TeV	<~10 TeV

Not enough to explain the knee at ~PeV

G. Morlino, CDY talk, 21 Sept. 2022

Maximum energy at SNR shocks

Maximum energy obtained from the condition $t_{acc} = t_{ST}$ \clubsuit $E_{max} \simeq 5 \times 10^{13} \mathscr{F}(k_{max}) \left(\frac{B_0}{\mu G}\right) \left(\frac{M_{ej}}{M_{\odot}}\right)^{-1/6} \left(\frac{E_{SN}}{10^{51} \text{ erg}}\right)^{1/2} \left(\frac{n_{ism}}{cm^{-3}}\right)^{-1/3} \text{ eV}$ E_{max} is weakly dependent on all parameters but the magnetic field PeV energies requires $\mathscr{F} = \left(\frac{\delta B_k}{B}\right)^2 \gg 1$ But for standard ISM $\mathscr{F} \left(1/r_L(1\text{PeV})\right) \sim 10^{-3}$ \clubsuit $E_{max} \sim few \text{ GeV}$ Need of magnetic field amplification

Maximum energy at SNR shocks

Only very young CC SNR can accelerate to PeV

Shure & Bell (2013)

Magnetic field at saturation for Bell instability

Efficient amplification requires:

- large densities
- large shock speed

Only very young CC SNR can accelerate to PeV

Shure & Bell (2013)

PeV energies can be reached:

- Only by core-collapse SN expanding into dense environment (slow and dense progenitor's wind)
- During the very early phase (age ≤ 50 years)

Cristofari, Blasi & Amato (2020)

Parameters for different type of SNRs

Туре	Ia	II	II*
$M_{ m ej} \left[{ m M}_{ m Sol} ight]$	1.4	5	1
$E_{\rm SN} \ [10^{51} \ {\rm erg}]$	1	1	10
$ m M_{wind}~[10^{-5}~M_{Sol}/yr]$	—	1	10
v_{wind} [10 km/s]	—	1	1
<i>r</i> ₁ [pc]	—	1.5	1.3

Cristofari, Blasi & Amato (2020)

Cristofari, Blasi & Amato (2020)

COMPARISON WITH THE CR SPECTRUM Parameters for different type of SNRs DETECTED AT THE EARTH Π **Ⅲ*** Type Ia KASCADE - SIBYLL2.1 DAMPE 10^{6} KASCADE - QGJset CALET LE $M_{\rm ej}$ [M_{Sol}] 1 1.4 5 $[(E) E^{2.7} [GeV^{1.7}m^{-2}s^{-1}sr^{-1}]_{p0}$ ARGO (p + He)CALET HE $E_{\rm SN}$ [10⁵¹ erg] 1 10 1 AMS - 02ARGO p fit PAMELA Tibet $M_{wind} [10^{-5} M_{Sol}/yr]$ 10 1 Type II $v_{wind} [10 \text{ km/s}]rr$ 1 1 *r*₁ [pc] 1.5 1.3 $10^{2}_{10^2}$ 10^{4} 10^{5} 10^{6} Rate = $\frac{2}{100 \text{ yr}}$; $\xi_{CR} = 0.06$ 10^{3} 10^{7} E[GeV]

Cristofari, Blasi & Amato (2020)

Cristofari, Blasi & Amato (2020)

No room for other SNRs

Cristofari, Blasi & Amato (2020)

No room for other SNRs

Role of stellar clusters

What are the other possibilities?
SN explosion occurs mainly in OB
associations
→ we need to consider SNe in the
context of star clusters

Role of stellar clusters

What are the other possibilities? SN explosion occurs mainly in OB associations

 \rightarrow we need to consider SNe in the context of star clusters

Role of stellar clusters

G. Morlino, CDY talk, 21 Sept. 2022

100

overlapping

SNRs

Energetics: stellar winds vs. SNe

Salpeter (1955) initial mass function of stars: $f(M) = \frac{dN_{\text{star}}}{dM} \propto M^{-2.35}$

Power injected by SNe $P_{\text{SNe}} = 10^{51} \text{erg} \int_{8M_{\odot}}^{M_1} f(M) \, dM$

Power injected by winds $P_{\text{wind}} = \int_{M_{\text{min}}}^{M_{\text{max}}} \left(\frac{1}{2}\dot{M}_{w}(M)v_{w}(M)^{2}\tau_{\text{life}}(M)f(M)dM\right)$

 $v_w = 2.5\sqrt{2G_N M/R}$ for line-driven winds;

M from analytical (approximated) models [<u>Nieuwenhuijzen & de Jager(1990)</u>]

$$\frac{P_{\rm wind}}{P_{\rm SNe}} \simeq 0.1 \div 0.5$$
main uncertainty due to mass loss rate

- Not accounting for WR stars

- Not accounting for failed supernovae ~10% of the total [Adams et al. (2017, MNRAS 469)]

G. Morlino, CDY talk, 21 Sept. 2022

Cassé & Paul (1980, 1982) – Cesarsky & Montmerle (1983)

		Forward shock		Reverse shock		
	age	$V_{\rm FS}$ [km/s]	R _{FS} [pc]	$V_{\rm RS}$ [km/s]	R _{RS} [pc]	
SNR	kyr	> 5000	<1	< 3000	<1	
Wind bubble	Myr	10 - 20	50-100	< 3000	1-10	

Cassé & Paul (1980, 1982) – Cesarsky & Montmerle (1983)

Cassé & Paul (1980, 1982) – Cesarsky & Montmerle (1983)

G. Morlino, CDY talk, 21 Sept. 2022

Cassé & Paul (1980, 1982) – Cesarsky & Montmerle (1983)

Maximum energy: first order estimate

Hillas criterium

$$E_{\rm max} \sim \left(\frac{q}{c}\right) B_{\rm sh} u_{\rm sh} R_{\rm sh}$$

	dM/dt M _{sol} /yr	$u_{ m sh} \ { m km/s}$	R _{sh} pc	Β μG	age yr	lim E _{max}	E_{max} TeV
SNR		> 5000	<1	~100 self-amplification	~103	time limited	~10-100
WTS (single star)	10-6	< 3000	~ 1	~ 1 MHD turbulence	~106	space limited	~ 10
WTS (massive cluster)	10-4	< 3000	>10	> 10 MHD turbulence	~106	space limited	~> 1000

For massive star cluster ($\gtrsim 10^4 M_{\odot}$) PeV energies can be reached

Maximum energy: a more detailed analysis GM, Blasi, Peretti & Cristofari (2019)

Solution of diffusive shock acceleration in spherical geometry

$$f_{s}(p) = s \frac{\eta_{\text{inj}} n_{1}}{4\pi p_{\text{inj}}^{3}} \left(\frac{p}{p_{\text{inj}}}\right)^{-s} e^{-\Gamma_{1}(p)} e^{-\Gamma_{2}(p)}$$
Standard power-law
for plane shocks
$$f_{s}(p) = \left[s \frac{\eta_{\text{inj}} n_{1}}{4\pi p_{\text{inj}}^{3}} \left(\frac{p}{p_{\text{inj}}}\right)^{-s}\right] e^{-\Gamma_{1}(p)} e^{-\Gamma_{2}(p)}$$
$$s = \frac{3u_{1}}{u_{1} - u_{2}}$$

G. Morlino, CDY talk, 21 Sept. 2022

G. Morlino, CDY talk, 21 Sept. 2022

Solution of diffusive shock acceleration in spherical geometry

the effective plasma speed decreased reducing the energy gain

The diffusion coefficient has a strong impact on the cutoff shape and effective maximum energy

Typical values for massive stellar clusters

$$\begin{cases} \dot{M} = 10^{-4} M_{\odot} \,\mathrm{yr}^{-1} \\ v_w = 3000 \,\mathrm{km/s} \\ L_{\mathrm{CR}} = 0.1 \,L_w \\ \eta_B = 0.01 \end{cases}$$

G. Morlino, CDY talk, 21 Sept. 2022

Old clusters \rightarrow super-bubbles

$t \gtrsim 3 \,\text{Myr}$ stellar wind + SNe

- Does the TS still exist?
- The turbulence in the bubble remains high due to wind and SN explosions
 - Efficient particles confinement in the bubble
- Maximum energy probably similar to the WTS case

Old clusters \rightarrow super-bubbles

- Does the TS still exist?
- The turbulence in the bubble remains high due to wind and SN explosions
 - Efficient particles confinement in the bubble
- Maximum energy probably similar to the WTS case

Particle acceleration in super-bubbles: intermittency

<u>Vieu et al. (2022)</u>: consider acceleration at WTS + SNR forward shock + turbulent acceleration

Particle acceleration in super-bubbles: intermittency

<u>Vieu et al. (2022)</u>: consider acceleration at WTS + SNR forward shock + turbulent acceleration

The spectrum is not universal -> strong intermittency

YSCs detected in gamma-rays

Recently several massive star clusters have been associated with gamma-ray sources

Name	log M/M _{sun}	r _c /pc	D/kpc	age/Myr	<i>L</i> _w / 10 ³⁸ erg s ⁻¹	Reference
Westerlund 1	4.6 ± 0.045	1.5	4	4-6	10	Abramowski A., et al., 2012, A&A, 537, A114
Westerlund 2	4.56 ±0.035	1.1	2.8 ± 0.4	1.5-2.5	2	Yang, de Oña Wilhelmi, Aharonian, 2018, A&A,
Cyg. OB2	4.7±0.3	5.2	1.4	3-6	2	Ackermann M., et al. 2011, Science, 334, 1103
NGC 3603	4.1 ± 0.10	1.1	6.9	2-3	?	Saha, L. et al 2020, ApJ, 897, 131
BDS 2003	4.39	0.2	4	1	?	Albert A., et al., 2020, arXiv:2012.15275
W40	2.5	0.44	0.44	1.5	?	Sun, XN. et al. 2020, A&A, 639, A80
30 Dor (LMC) NGC 2070/RCM 136	4.8-5.7 4.34-5	multiple sub-clusters	50	1 5	?	H. E. S. S. Collaboration et al., 2015, Science, 347, 406

YSCs detected in gamma-rays

HESS coll. A&A (2022)

7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 85 84 83 82 81 80 79 78 77 76 75 74

-4 -2 0 2 4 6 8 10 12 14 Significance (σ)

1 (°)

HAWC coll. Nat. Astr.(2020)

Cygnus Cocoon

W40 – FermiLAT data from 2.5 Sun et al. (2020) arxiv:2006.00879

YSCs detected in gamma-rays

[Aharonian, Yang & Wilhelmi, Nat. Astr. (2019)]

Some clusters show similar spectra and radial profile

The case of Cygnus Cocoon

[S. Menchiari et al. in preparation]

LHAASO has detected photos up to 1.4 PeV!

However, looking at the present data we infer $E_{\rm max} \sim 100 {\rm ~TeV}$

Some caveats:

The analysis is difficult de to the extended nature of the source: different analysis of Fermi-LAT data gives different results

In comparing different experiments we need to correctly account for the different extraction area: LHAASO data-point is not used for the fit because the extraction area is not specified

LHAASO spectrum not published yet

Extra-galactic context: SNR and starburst galaxies

Starburst Galaxies

OUTLINE

- * Why Starburst Galaxies are interesting?
- Observation of Starburst Galaxies
- * Possible acceleration regions:
 - Starburst nuclei
 - Starburst-driven winds
- * Diffuse emission from Starburst Galaxies

G. Morlino, CDY talk, 21 Sept. 2022

Starburst Galaxies

SB galaxies are usually associated to events of galaxy mergers

* High star formation rate (10-100 times the Milky Way) in a small region (~200 pc)

 \Rightarrow large SN rate \Rightarrow high CR production

- * High level of turbulence \Rightarrow efficient CR confinement \Rightarrow Calorimetry?
- * High gas density \Rightarrow efficient γ and ν production
- * Abundant at high redshift \Rightarrow Contribution to diffuse flux?

Typical starburst environment* SFR $\simeq 10 - 100 M_{\odot} \mathrm{yr}^{-1}$ * Average ISM density $n \simeq 10^2 - 10^3 \mathrm{cm}^{-3}$ * Magnetic field $B \simeq 50 - 250 \,\mu\mathrm{G}$ * Radiation field density $U_{\mathrm{rad}} 10^3 \mathrm{eV cm}^{-3}$ * Wind velocity $v_{\mathrm{wind}} \simeq 500 \mathrm{km/s}$ * Supernova rate $\mathscr{R}_{\mathrm{SN}} \simeq 0.03 - 0.3 \mathrm{yr}^{-1}$ * Starburst lifetime $\simeq 10 \mathrm{Myr}$

Observation of Starburst Galaxies - gamma

Star formation rate correlate with non-thermal emission

Gamma-ray

Radio

Observation of Starburst Galaxies - gamma

- * Many SB observed at GeV
- Most nearby also detected at TeV
 - M82, NGC 253 (<4 Mpc)
- * Most distant source: Arp 220 (77 Mpc)
- * Observed spectrum usually hard:

$$\sim E^{-2.2} \div E^{-2.3}$$

CR propagation and confinement in SB nuclei

[Peretti, Blasi, Aharonian, GM (2019)]

We adopt a leaky-box model

$$\frac{f(p)}{\tau_{\text{loss}}} + \frac{f(p)}{\tau_{\text{adv}}} + \frac{f(p)}{\tau_{\text{diff}}} = Q_{\text{inj}}(p)$$

Injection

$$Q_{inj}(p) = N(p) \mathcal{R}_{SN} V^{-1}$$
$$N_p(p) \propto p^{-\alpha} e^{-p/p_{max}}$$
$$N_e(p) \propto k_{ep} p^{-\alpha} e^{-(p/p_{max})^2}$$

Losses

$$\frac{1}{\tau_{\rm loss}} = \Sigma_i \left(-\frac{1}{E} \frac{dE}{dt} \right)_i$$

 $p \rightarrow \text{ionisation}, p-p \text{ collision}, \text{Coulomb}$ $e \rightarrow \text{ionisation}, \text{sync. IC}, \text{brem.}$

CR propagation and confinement in SB nuclei

Diffusion

$$D(p) = \frac{r_L(p)v}{3} \frac{1}{k_{\text{res}}W(k_{\text{res}})}$$

Magnetic turbulence

$$W(k) = W_0 \left(kL_0\right)^{-\alpha}$$

- A) Kolmogorov: d = 5/3; $L_0 \simeq 1 \text{ pc}$
- B) Bohm: d = 0
- C) Milky Way-like: d = 5/3; $L_0 = 100 \text{ pc}$

- Electrons are confined in SBNi
- Advection and losses mainly regulate the transport of protons

G. Morlino, CDY talk, 21 Sept. 2022

[Peretti, Blasi, Aharonian, GM (2019)]

1 \rightarrow primaries 2 \rightarrow secondaries: $\pi^{\pm} \rightarrow \mu^{\pm} \rightarrow e^{\pm}$ 3 \rightarrow tertiaries: $\gamma\gamma \rightarrow e^{+}e^{-}$

[Peretti, Blasi, Aharonian, GM (2019)]

1 \rightarrow primaries 2 \rightarrow secondaries: $\pi^{\pm} \rightarrow \mu^{\pm} \rightarrow e^{\pm}$ 3 \rightarrow tertiaries: $\gamma\gamma \rightarrow e^{+}e^{-}$

[Peretti, Blasi, Aharonian, GM (2019)]

1 \rightarrow primaries 2 \rightarrow secondaries: $\pi^{\pm} \rightarrow \mu^{\pm} \rightarrow e^{\pm}$ 3 \rightarrow tertiaries: $\gamma\gamma \rightarrow e^{+}e^{-}$

[Peretti, Blasi, Aharonian, GM (2019)]

Application to individual SB galaxies: M82

Photon background fitted from available data

Parameters	M82
$U_{ m eV/cm^3}^{ m FIR}$ [$rac{ m kT}{ m meV}$]	1618 [3.0]
$U_{\mathrm{eV/cm}^3}^{\mathrm{MIR}} \left[\frac{\mathrm{kT}}{\mathrm{meV}}\right]$	1132 [7.5]
$U_{\mathrm{eV/cm}^3}^{\mathrm{NIR}} \left[\frac{\mathrm{kT}}{\mathrm{meV}} \right]$	809 [24.0]
$U_{\rm eV/cm^3}^{ m OPT}$ [$\frac{\rm kT}{\rm meV}$]	970 [330.0]

[Peretti, Blasi, Aharonian, GM (2019)]

G. Morlino, CDY talk, 21 Sept. 2022

Application to individual SB galaxies: M82

[Peretti, Blasi, Aharonian, GM (2019)] 10-4 star-light Photon background 10⁻⁵ M82 **Parameters** E² F(E) [GeV cm ⁻² s⁻¹] fitted from available data 10⁻⁶ $U_{\rm eV/cm^3}^{\rm FIR}$ [$\frac{\rm kT}{\rm meV}$] 1618 [3.0] × 10-7 free-free $U_{\rm eV/cm^3}^{\rm MIR}$ [$\frac{\rm kT}{\rm meV}$] 1132 [7.5] 10⁻⁸ 10⁻⁹ $U_{\rm eV/cm^3}^{\rm NIR}$ [$\frac{\rm kT}{\rm meV}$] 809 [24.0] 10⁻¹⁰ syncrothron $U_{\mathrm{eV/cm^3}}^{\mathrm{OPT}}$ [$\frac{\mathrm{kT}}{\mathrm{meV}}$] 970 [330.0] 10⁻¹ 10⁻⁵ 10⁻³ 10-2 10-4 10⁰ 10-1 10¹ E [eV] **M82** Parameters Gamma-ray spectrum π^0 $\rightarrow \gamma \gamma$ Fermi-LAT D_L (Mpc) [z] 3.9 [9 10⁻⁴] IC Brem ۰ŧ Chandra 10⁻⁹) $\mathcal{R}_{\rm SN}$ (yr⁻¹) 0.05 E² F(E) [GeV cm ⁻² s⁻¹] Sync *R* (pc) 220 Veritas 10⁻¹⁰ 4.25 α 3 **B** (μG) 225 $M_{\rm mol} (10^8 M_{\odot})$ 1.94 10⁻¹¹ $n_{\rm ISM}~({\rm cm}^{-3})$ 175 $n_{\rm ion}~({\rm cm}^{-3})$ 22.75 10-12 10² 10⁰ 10-4 10⁻² 10⁴ 10-6 $v_{\rm wind}$ (km/s) 600 Energy [GeV] T_{plasma} (K) 7000

[Peretti, Blasi, Aharonian, GM, Cristofari (2020)]

[Peretti, Blasi, Aharonian, GM, Cristofari (2020)]

1) Determining the calorimetric condition

To be efficient neutrinos factories, SB nuclei should confine CRs efficiently

Using the Kennicutt (1998) relation:

$$\frac{\Sigma_{\rm SFR}^*}{M_{\odot} {\rm yr}^{-1} {\rm kpc}^{-2}} = (2.5 \pm 0.7) \times 10^{-4} \left[\frac{\Sigma_{\rm gas}^*}{1 \ M_{\odot} {\rm pc}^{-2}}\right]^{1.4 \pm 0.15}$$

$$\psi^* = \Sigma_{\text{SFR}}^* \pi R^2 \approx 0.9^{+2.2}_{-0.7} \left[\frac{R}{0.25 \text{ kpc}} \right]^2 M_{\odot} \text{yr}^{-1}.$$

Efficient calorimeter if $\psi > \psi^*$

[Peretti, Blasi, Aharonian, GM, Cristofari (2020)]

- 1) Determining the calorimetric condition
- 2) Counting the SBNi
- Gamma and neutrino spectra

 $q_{\gamma,\nu}(E) \propto \begin{cases} q(p) & \tau_{\text{loss}} \ll \tau_{\text{adv}} \\ [n_{\text{ISM}} \sigma_{pp} c] q_p(p) R / v_{\text{wind}} & \tau_{\text{loss}} \gg \tau_{\text{adv}} \end{cases}$

Calorimetric limit

• Gamma and neutrino flux from a single SNB

$$f_{\gamma,\nu}^{\text{SBN}}(E,\psi) = \left(\frac{\psi}{\psi_{\text{M82}}}\right) f_{\gamma,\nu}^{M82}(E), \quad \text{for } \psi > \psi^*$$

- Determining the SFRF from a fit to the IR+UV data [Gruppioni et al. (2015)] $\Phi(\psi) \, d \log \psi = \tilde{\Phi} \left(\frac{\psi}{\tilde{\psi}}\right)^{1-\tilde{\alpha}} \exp\left[-\frac{1}{2\tilde{\sigma}^2}\log^2\left(1+\frac{\psi}{\tilde{\psi}}\right)\right] d \log \psi,$
- Gamma-ray and neutrino flux integrated over the cosmological history

$$\Phi_{\gamma,\nu}(E) = \frac{1}{4\pi} \int d\Omega \int_0^{4.2} dz \; \frac{dV_{\rm C}(z)}{dz \, d\Omega} \times \int_{\psi^*} d\log\psi \; \Phi_{\rm SFR}(\psi,z) \; [1+z]^2 f_{\gamma,\nu}(E[1+z],\psi).$$

[Peretti, Blasi, Aharonian, GM, Cristofari (2020)]

- 1) Determining the calorimetric condition
- 2) Counting the SBNi
- 3) Results

Values tuned to M82

parameter	value		
$p_{p,\max}$	10 ² PeV		
α	4.2		
R	0.25 kpc		
D_L	3.9 Mpc		
ξcr	0.1		
$\mathcal{R}_{\mathrm{SN}}$	0.06 yr^{-1}		
В	200 µG		
<i>n</i> _{ISM}	$100 {\rm ~cm^{-3}}$		
vwind	700 km/s		
U _{rad}	2500 eV/cm ³		

- IceCube ν can be explained by SBNi at E > 100 TeV
- Diffuse gamma-ray flux still compatible with FermiLAT: $\leq 40\%$ (Blazar contribution is between 60% and 85%)
- Hard acceleration slope: $\propto E^{-2.2}$

[Peretti, Blasi, Aharonian, GM, Cristofari (2020)]

- 1) Determining the calorimetric condition
- 2) Counting the SBNi
- 3) Results

Values tuned to M82

parameter	value		
$p_{p,\max}$	10 ² PeV		
α	4.2		
R	0.25 kpc		
D_L	3.9 Mpc		
ξcr	0.1		
$\mathcal{R}_{\mathrm{SN}}$	0.06 yr^{-1}		
В	200 µG		
n _{ISM}	100 cm^{-3}		
$v_{\rm wind}$	700 km/s		
$U_{\rm rad}$	2500 eV/cm ³		

- IceCube ν can be explained by SBNi at E > 100 TeV
- Diffuse gamma-ray flux still compatible with FermiLAT: $\leq 40\%$ (Blazar contribution is between 60% and 85%)
- Hard acceleration slope: $\propto E^{-2.2}$
- Maximum energy > 50 PeV is required: how can be produced? (If sources are SNRs, the physics should be similar to Milky Way SNRs)
- Possible role of turbulence like super-bubbles?

[Peretti, GM, Blasi, Cristofari, (2022)]

[Peretti, GM, Blasi, Cristofari, (2022)]

Transport equation in spherical coordinates (approximation)

$$r^{2}u(r)\frac{\partial f}{\partial r} = \frac{\partial}{\partial r}\left[r^{2}D\frac{\partial f}{\partial r}\right] + \frac{1}{3}\frac{\partial}{\partial r}\left[r^{2}u\right]p\frac{\partial f}{\partial p} + r^{2}Q(r,p) - r^{2}\Lambda(r,p)$$

[Peretti, GM, Blasi, Cristofari, (2022)]

Transport equation in spherical coordinates (approximation)

[Peretti, GM, Blasi, Cristofari, (2022)]

Transport equation in spherical coordinates (approximation)

[Peretti, GM, Blasi, Cristofari, (2022)]

Transport equation in spherical coordinates (approximation)

High energy SED and neutrinos

Total gamma and neutrino emission from SBN and Wind

G. Morlino, CDY talk, 21 Sept. 2022

Diffuse emission from SBGs

Integrating over the population of SBGs

Acceleration at the wind TS need to be harder $\propto E^{-2}$

G. Morlino, CDY talk, 21 Sept. 2022

Multi-messenger emission from SBGs

SB nucleus is a calorimeter but the wind bubble is not

CRs can escape from the wind-bubble

Proton contribution from SB winds to the all-particle CR spectrum

A possible non negligible contribution at ~100 PeV

Heavy CR nuclei up to $\gtrsim 1000 \text{ PeV}$

G. Morlino, CDY talk, 21 Sept. 2022

Conclusions

- * SNRs in the Milky Way remains the principal candidates for the acceleration of Galactic CRs
 - * Isolated (regular) SNRs unable to accelerate beyond ~100 TeV
 - * Stellar winds and super-bubbles could reach $E_{\text{max}} \gtrsim 1 \text{ PeV}$
 - However no clear indication yet from observations
- SNRs power the nuclei of starburst galaxies and the large scale winds
 - * SBNi can approach the calorimetric conditions; wind-bubbles do not
 - We expect gamma-rays and neutrinos both from SBNi and winds
 - * neutrinos compatible with IceCube flux for $E \gtrsim 100 \text{ TeV}$
 - * γ -rays probable responsible of $\leq 40\%$ of the EBL at ~1 TeV
 - * SB wind-bubbles can produce a sizeable contribution to the CR spectrum in the range $10^{17} \text{ eV} \lesssim E \lesssim 10^{18} \text{ eV}$

G. Morlino, CDY talk, 21 Sept. 2022

Backup slides

Cluster compactness

[Gupta, Nath, Sharma & Eichler, MNRAS 2020]

A WTS is generated if the cluster is compact enough, such that $R_{\text{cluster}} \ll R_{\text{ts}}$

G. Morlino, CDY talk, 21 Sept. 2022