

Michigan Tech

U.S. DEPARTMENT OF Office of Science

Surveying the TeV γ -Ray Sky with the HAWC Wide-Field Observatory

Petra Huentemeyer petra@mtu.edu

Energy range: Angular resolution:

 \sim 300 GeV to >100 TeV ~1° to 0.1°

Wide-Field-of-View Ground-Based γ -Ray Observatories

Duty Cycle, Field-of-View & Energy 3 Main Features

- High duty cycle (> 95% uptime)
 ✓ Transients
- Wide field-of-view
 - ✓ Extended and large scale emission
- Good Sensitivity, Angular & Energy Resolution > 10 TeV

✓ Highest energy accelerators

Wide Field-Of-View

- HAWC (almost) continuously observes the sky as it transits over its zenith
- Instantaneous field of view of HAWC \sim 1.8 sr (\sim 15% of the sky)

Sensitivity vs Energy

Sensitivity vs Energy

Main Features → Recent HAWC Results

- Survey capabilities
 - ✓ Source searches
 - ✓ 3rd HAWC catalog
- Extended and large scale emission sensitivity
 - ✓ New source class: halos
 - ✓ Northern Fermi bubble
 - ✓ Molecular clouds
 - ✓ Diffuse emission
- High-energy γ -ray sensitivity
 - ✓ Several PeVatron candidates
 - ✓ Test of fundamental physics in unique phase space

Survey of the Northern Sky: 3HWC Catalog

- Catalog from 1523 days of data: $3 \times exposure$ of previous 2HWC catalog > several TeV
- 65 sources detected at > 5σ :
 - 20 sources > 1°away from previously detected TeV sources
 - 14 of these have potential counterpart in the 4th Fermi-LAT catalog

ApJ, Vol. 905

S

id.76,

14pp. (2020

3HWC Catalog: Spatial Distribution of Sources

- Majority along the Galactic plane
- Due to its location, HAWC most sensitive towards the Galactic anti-center region and, to the inner Galaxy
- Significant fraction of 3HWC sources found near pulsars listed in the ATNF catalog (Two of these, PSR J0631+1036 and PSR J1740+1000, have not previously been connected with TeV emission)

New Source Class: Halos

- In 2017, HAWC reported the detection of extended TeV γ-ray emission coincident with the locations of two nearby middle-aged pulsars: Geminga and PSR B0656+14 (inside Monogem ring) [<u>Science 358, 911–914 (2017)</u>]
- Observations demonstrated that these pulsars are indeed local sources of accelerated leptons, and the surrounding emission profile can be used to constrain the diffusion of particles away from their sources → much slower than previously assumed

New Source Class: Halos

The Geminga halo discovery and the discovery of several extended TeV PWNe by H.E.S.S. (<u>A&A 612, A2 (2018)</u>), lead to the hypothesis that extended *"Halos"* are a common feature of pulsars [<u>PRD 96, 103016 (2017)</u>; <u>PRL 120,</u> 121101 (2018); <u>PRD, 100, 043016 (2019)</u>; <u>Astro2020</u>; <u>BAAS, Vol. 51, Is. 3, id. 311 (2019)</u> ; <u>A&A 636, A113 (2020)</u>]

• Interpretations:

- Observed γ ray emission due to IC up-scattering of CMB photons by relativistic e⁻, e⁺ that have escaped from the PWN, but remain trapped in a larger region where diffusion is *inhibited* compared to the interstellar medium
- Only, form around very old pulsar (at least 100 kyr old) that either left their SNR shell or whose SNR shell
 already dissipated, allowing relativistic e⁻, e⁺ to diffuse freely in the vicinity of the pulsar
- Distinct from (classical) PWNe, in that the $e^- e^+$ plasma escaped from the x-ray PWN.
- Also detected at lower γ -ray energies by Fermi-LAT: γ -ray halos [Rev. D 100, 123015 (2019)]

Halos Candidates in the 3HWC Catalog

- Using similar criteria as <u>PRD 96, 103016 (2017)</u>, a list of pulsars is created within 3HWC catalog that are likely candidates to have a TeV Halo: ATNF pulsars with
 - ages between 100kyr and 400kyr
 - declinations between -25° and $+64^{\circ}$
 - estimated spin-down flux of at least 1% of that of the Geminga pulsar.

\rightarrow 16 such pulsars, 8 spatially coincident with at least one 3HWC source (within 1°)

HAWC	<i>l</i> [°]	<i>b</i> [°]	Pulsar	Age [kyr]	$\dot{E} \ [\mathrm{erg} \ \mathrm{s}^{-1}]$	Distance [kpc]	Separation [°]	TeVCat
3HWC J0540+228	184.58	-4.13	B0540 + 23	253.0	4.09e + 34	1.56	0.83	HAWC J0543+233
3 HWC J0543 + 231	184.67	-3.52	B0540 + 23	253.0	4.09e + 34	1.56	0.36	HAWC J0543+233
3HWC J0631+169	195.63	3.45	J0633 + 1746	342.0	3.25e + 34	0.19	0.95	Geminga
3 HWC J0634 + 180	195.00	4.62	J0633 + 1746	342.0	3.25e + 34	0.19	0.38	Geminga Pulsar
3 HWC J0659 + 147	200.60	8.40	B0656 + 14	111.0	3.8e + 34	0.29	0.51	2HWC J0700+143
3HWC J0702+147	200.91	9.01	B0656 + 14	111.0	3.8e + 34	0.29	0.77	2HWC J0700+143
3HWC J1739+099	33.89	20.34	J1740 + 1000	114.0	2.32e + 35	1.23	0.13	
3HWC J1831-095	22.13	0.02	J1831 - 0952	128.0	1.08e + 36	3.68	0.27	HESS J1831-098
3HWC J1912+103	44.50	0.15	J1913 + 1011	169.0	2.87e + 36	4.61	0.31	HESS J1912+101
3HWC J1923+169	51.58	0.89	J1925 + 1720	115.0	9.54e + 35	5.06	0.67	
3HWC J1928+178	52.93	0.20	J1925 + 1720	115.0	9.54e + 35	5.06	0.85	2HWC J1928+177
3HWC J2031+415	80.21	1.14	J2032 + 4127	201.0	1.52e + 35	1.33	0.11	TeV J2032 $+4130$

, Vol. 905, Is. 1, id.76, 14 pp. (2020)

Are Ultra-high-energy Gamma Rays Are a Universal Feature near Powerful Pulsars?

- Highest-energy γ -ray sources appear to be located near extremely powerful pulsars
- Using four years of HAWC data joint-likelihood analyses of emission near locations of 10 extremely powerful pulsars was performed to search for subthreshold UHE gammaray emission correlated with these locations
 - $\dot{E} > 10^{36}$ erg s-1
 - Inner galaxy in HAWC's field of view ($|b| < 1^{o}, 5^{o} <$ $l < 90^{\circ}$)
 - 1^o from detected UHE sources

ApJL, Vol. 911, Is. 2, id.L27, 8 pp. (2021)

13

$\frac{dN}{dN} = A \cdot K \left(\frac{E}{E}\right)^{-\alpha}$	Table 3 The Test Statistic for the Joint-likelihood Analysis for Each Model, Using the Ten Subthreshold Sources						
$dE = \prod_{i=1}^{n} \prod_{j=1}^{n} \left(E_0 \right)$	Model	TS $(56 < E < 100 \text{ TeV})$	TS $(100 < E < 177 \text{ TeV})$	TS (177 < <i>E</i> < 316 TeV)			
	No model	27.9	8.33	1.59			
	$1/d^{2}$	31.9	9.08	1.29			
	\dot{E}/d^2	9.58	5.24	0.00			
*	Inverse age	9.19	3.79	0.03			
	Flux at 7 TeV	26.3	9.61	3.62			

PeVatron Studies: The Boomerang Region

- Very-high-energy γ -ray emission > 100 TeV from HAWC J2227+610
- Excess well isolated and inconsistent with background fluctuations at the 6.2 σ level (pre-trials), or about 4.3 σ (post-trials considering HAWC's entire FoV)
- Right figure:
 - Best-fit position of HAWC J2227+610 is consistent with the VHE detections by VERITAS and Milagro, and with the
 position of PSR J2229+6114 (within uncertainties)
 - Heat map: Molecular column density
 - Pink contours: 1.4 GHz continuum brightness temperature from the Canadian Galactic Plane Survey

(2020)

pp.

σ

id.L29,

<u>S</u>

896,

<u>Vol</u>.

ApJL,

PeVatron Studies: The Boomerang Region

- Gaussian extent of HAWC J2227+610 is constrained to be $< \pm 0.232^{\circ}$, morphology is consistent with VERITAS
- Joint VERITAS–HAWC spectrum well fit by a power law ($\gamma \approx -2.3$) from ~ 0.9 to ~ 180 TeV:
 - Emission can be interpreted to be originating from protons with a lower limit in their cutoff energy of 800 TeV.
 - Most likely source of the protons: the associated supernova remnant G106.3+2.7
 - But purely leptonic origin of the observed emission could not be excluded at the time
- Both, Tibet-AS γ and LHAASO, since reported >100 TeV emission
- Deeper morphological studies would be helpful

SNR Subthreshold Studies

- Search for TeV gamma-ray emission from SNRs that have been detected in GeV gamma rays by Fermi-LAT in HAWC data
- Focus on ten GeV-emitting SNRs that are not significantly detected by HAWC
- Assuming the same morphology as seen in GeV gamma rays, no evidence for sub-threshold TeV gamma-ray emission in this sample

PoS ICRC2021, 826 (2021)

PeVatron Searches: Recent More Detailed Results

PeVatron Searches: An Example

Spectral shape and emission profile

changes from GeV to TeV energies

10¹²

E, (eV)

1010

10⁹

10¹¹

10¹⁴

10¹⁵

10¹³

PeVatron Searches: An Example

6

5

3

2 , (_) q

0

-2 -3

-4

Energy [TeV]

PeVatron Searches: And Example

6

5

3

-2

-3

(_o) q

7 OB2 SFR 6 5 (Cygnus Cocoon) 3 2 (_°) q HAWC J2031+415 0 -2 -3 -4 85 84 83 82 81 80 79 78 77 76 75 74 85 84 83 82 81 80 79 78 77 76 75 74 1 (°) 1 (°) b PRELIMINARY HAWC PWN spectrum 10 12 14 2 10 12 14 2 8 -2 0 4 6 8 -2 0 4 6 10-Significance (σ) Significance (σ) HAWC PWN. This Study 0.14 Cosmic ray energy density (eV cm⁻³) HEGRA TeV 2032+4130, 2005 recent burst 0.12 MAGIC 12032+4127, 2008 MAGIC [2032+4127, baseline from periastron study, 2018 0.10 ϕ_{γ} (TeV cm⁻² s⁻¹) VERITAS (2031+415 scaled, 2018 VERITAS [2031+415 scaled, 2014 0.08 10-11 HAWC PWN fluxpoints. This Study 0.06 *PoS* ICRC2021, 836 (2021) HAWC 10-12 ermi 4FGL 0.04 ermi-LAT Aharonian et 0.02 ARGO 10⁻¹³ -0 1010 1012 10¹³ 1014 10¹⁵ 10^{9} 10 0 E. (eV) 10-1 10² 10-1

Note: Extrapolating the Cocoon emission measured by HAWC to a 0.3 extent produces excellent agreement with the flux reported by LHAASO, Nature, 594, 33–36 (2021)

Nat. Astro., 5, 465-471 (2021)

PeVatron Searches: Another Example

Other Recent Results of Probing our Galaxy

• Recent:

- 10s TeV γ ray emission from **SS433**; particle acceleration is occurring in the jets, not in the central binary
- Upper Limits on *Fermi Bubble* emission and disfavoring proton injection spectrum that extends >100 TeV w/o suppression and [ApJ, Vol. 842, Is. 2, id. 85, 9 pp. (2017)]
- Probe of the "sea" of cosmic rays in distant galactic regions through their interaction with *Giant Molecular Clouds* that generates multi-TeV γ ray emission [ApJ, Vol. 914, Is. 2, id. 106, 14 (2021)]
- Forthcoming:
 - Test of *Galactic Diffuse Emission* Models at multi-TeV (GALPROP, DRAGON)

Fundamental Physics: LIV & Dark Matter

Future Improvements

- Currently testing a new data pass of main array data (*pass5*)
 - Significant improvement of PSF (~0.1 deg at highest energy)
 - Significant improvements at low energies
 - Some forthcoming (unexpected?) results (over the next few months)

Future Improvements

Interesting Regions of event excess

Future Improvements

- Currently testing a new data pass of main array data (*pass5*)
 - Significant improvement of PSF (~0.1 deg at highest energy)
 - Significant improvements at low energies
 - Some forthcoming (unexpected?) results (over the next few months)
- Working on combining main array data with outrigger data (*pass6*)
 - First studies indicate mean energies of ~250 TeV along the Galactic plane
- Continuing to work on combining HAWC data with data from other observatories (both electromagnetic and other messenger) and making HAWC data usable for the community

The Future: Southern Wide Field Gamma-Ray Observatory*

SWGO will be located in Argentina, Bolivia, Chile, or Peru

^{* (}Endorsed by Astro2020 PAG committee)

HAWC-Outlook

- Ever more sensitive techniques used in HAWC data reconstruction & analysis
 - New source detections and the 4th HAWC catalog (using a Fermi-like Multi-Source Fitting approach)
- With **HAWC and LHAASO**, we now have two instruments with unprecedented sensitivity > 10 TeV that also provide different complementary instantaneous views of the sky (time domain)
- Multi-instrument and -messenger analyses will provide unprecedented science output
 - Preparation of publicly available energy dependent HAWC sky maps and HAWCtools