THE CRAB NEBULA

Elena Amato

INAF- Osservatorio Astrofisico di Arcetri

Firenze - Italy

"THE BEST STUDIED OBJECT IN THE UNIVERSE OUTSIDE THE SOLAR SYSTEM"

Citation from J. Hester 2008

THE CRAB NEBULA SPECTRUM

BROAD BAND NON-THERMAL SPECTRUM

synchrotron radiation by relativistic particles in the nebular B field Inverse Compton scattering with local photon field

PARTICLES AND FIELD FROM ROTATIONAL ENERGY LOST BY PULSAR [Pacini 1967]

THE CRAB NEBULA AS A PROTOTYPE

Crab Nebula (composite) PSR B1509 (X-ray composite)

PULSAR WIND NEBULAE OR PLERIONS

SNRs WITH

CENTER FILLED MORPHOLOGY

- BROAD NON THERMAL SPECTRUM
- FLAT RADIO SPECTRUM

 $F_{\nu} \propto \nu^{-\alpha}, \quad \alpha < 0.5$

THE CRAB NEBULA IN GAMMA-RAYS

THE ONLY **ESTABLISHED** GALACTIC **PEVATRON!!!**

THE CENTRAL ENGINE

$$\dot{E} = \kappa \dot{N}_{GJ} m_e \Gamma c^2 \left(1 + \frac{m_i}{\kappa m_e} \right) (1 + \sigma)$$

$$\sigma = \frac{B^2}{4\pi \ n_{\pm} \ m_e \ c^2 \ \Gamma^2}$$

BASIC PICTURE OF A PWN

[Del Zanna & Olmi 2017]

 $P_{PWN} = \frac{\dot{E} t}{4\pi R_N^3}$ $\frac{\dot{E}}{4\pi c R_{TS}^2}$

7

THE TERMINATION SHOCK

Adapted from Kennel & Coroniti 1984 [Del Zanna & Olmi 2017]

$$R_{TS} = \left(\frac{v_N}{c}\right)^{1/2} R_N$$

DISSIPATION AND PARTICLE ACCELERATION AT TS

(Pacini & Salvati 1973, EA+ 2000, Bucciantini+ 2011....) (also Fraschetti & Pohl 2017 for log-parabola injection)

ACCELERATOR!

HOW ARE PARTICLES ACCELERATED ?????

★EFFICIENCY OF ACCELERATION >20% ★MAXIMUM ENERGY >PeV

COLLISIONLESS SHOCK (*) POSSIBILITIES DEPEND ON

MAGNETIC INCLINATION

10

CONSTRAINING THE WIND MAGNETIZATION

1D/2D STATIC MODELS OF PWNE

[Rees & Gunn 1974, Kennel & Coroniti 1984, Emmering & Chevalier 1987, Begelman & Li 1992]

FROM DYNAMICS AND RADIATION MODELING OF OPTICAL /X-RAY EMISSION

THE O PROBLEM

FROM PULSAR THEORIES: $\sigma \sim 10^4 \, @ \, R_L$

FROM 1D PWN MODELS: $\sigma \sim 10^{-3} @ R_{TS}$

 $R_{TS} \sim 10^9 R_L$

BUT ENERGY CONVERSION DIFFICULT TO EXPLAIN

CHANDRA'S VIEW OF PWNE

Pavlov et al. 2001

(Weisskopf+ 00)

Jet-torus morphology of inner nebula

Counter jet

Equatorial torus

Polar jet

B1509-58 (X-rays+radio)

(Slane et al., 2009)

THE JET PUZZLE

Crab Nebula (Weisskopf+ 00)

Knots

JET FROM R<R_{TS}

BUT NO MAGNETIC COLLIMATION IN RELATIVISTIC FLOWS [Lyubarsky & Eichler 01]

 $\Gamma \gg 1 \rightarrow \rho \vec{E} + \vec{J} \times \vec{B} \sim 0$

 $F\propto \sin^2(heta)$ [Bogovalov & Khangoulian 02, Lyubarsky 02]

Vela Nebula (Pavlov+ 01)

Arcs

THE ANISOTROPIC PULSAR WIND

Komissarov & Lyubarsky 03, 04; Del Zanna+ 04, 06; Bogovalov+ 05 Camus+ 09; Volpi+ 08; Olmi+ 14, 15

 $F(\theta) \propto \sin^2(\theta)$

 $B(\theta) \propto \sqrt{\sigma} \sin \theta \ G(\theta)$

2D MHD NUMERICAL MODELING: RINGS AND TORII

A: ULTRARELATIVISTIC WIND B: SUBSONIC OUTFLOW C: <u>SUPERSONIC FUNNEL</u>

2D MHD NUMERICAL MODELING: JETS

EQUIPARTITION NEEDED FOR JET FORMATION

IN 2D JETS REQUIRE σ >0.03

Del Zanna, EA, Bucciantini 04, 06

-2.0

-1.5

-1.0

-0.5

0.0

1.0

0.5

MAKING A JET

Del Zanna, EA, Bucciantini 04, 06

BEHIND PRETTY PICTURES

 $\overline{B}_{sim} \approx 10^{-5} G$

Volpi+ 08, Olmi+14

 $B_{obs} \approx 10^{-4} G$

3D RMHD SIMULATIONS

GLOBAL DYNAMICS DIFFERENT

INNER DYNAMICS SIMILAR

EARLY SUGGESTION (Begelman 98): KINKS REDUCE HOOP STRESS WITH LITTLE DISSIPATION

LONGER 3D RMHD SIMULATIONS

SELF SIMILAR PHASE FULLY REACHED

ALL IS SOLVED?

- ✓ SHRINKAGE AND WISPS VARIABILITY OK
- NO BRIGHT X-RAY TORUS

AVERAGE FIELD STILL TOO LOW ARTIFICIAL STEEPENING OF X-RAY PARTICLE SPECTRUM STILL NEEDED
 IC SPECTRUM STILL OVERESTIMATED

EVEN HIGHER σ NEEDED <u>ON AVERAGE</u>

DIFFERENT LOCATIONS OF PARTICLE ACCELERATION?

CONSTRAINING THE PULSAR MULTIPLICITY

K IS CONSTRAINED BY RADIO EMITTING PARTICLES

RADIO EMITTING PARTICLES HAVE LONG LIFETIMES: DO NOT NEED TO BE PART OF THE FLOW

> IF PART OF THE FLOW $\kappa \approx 10^6$ $\Gamma \approx 10^4$ OTHERWISE $\kappa \approx 10^3 - 10^4$ $\Gamma \approx 10^6 - 10^7$

RADIO EMISSION

CONSTRAINING THE LOCATIONS OF PARTICLE ACCELERATION

VARIABILITY IN THE INNER NEBULA

RADIO VS OPTICAL WISPS

HINTS ON LOCATIONS OF PARTICLE ACCELERATION

TAKE HOME MESSAGE

NEBULAR DYNAMICS AND HIGH ENERGY EMISSION PROPERTIES

MODELLING OF RADIO EMISSION $\kappa \approx \text{few} \times 10^3$ AND $\Gamma > \text{few} \times 10^6$ VIABLE

MODELLING OF MULTIFREQUENCY VARIABILITY OF INNER NEBULA

30

ACCELERATION MECHANISMS

PARTICLE ACCELERATION MECHANISMS (BEST STUDIED)

FERMI MECHANISM

FFICIENT AT UNMAGNETIZED e+-e- RELATIVISTIC SHOCKS [Spitkovsky 08]

- NO ACCELERATION AT σ>0.001 SUPERLUMINAL SHOCKS [Sironi & Spitkovsky 09, 11]

- TOO SLOW TO GUARANTEE MAXIMUM ENERGY OBSERVED IN CRAB [Pelletier+ 17]

POSSIBLY EFFICIENT AT HIGHLY TURBULENT MODERATELY MAGNETIZED

SHOCKS [Lemoine 17, Giacinti & Kirk 18, Cerutti & Giacinti 20]

✓ RIGHT SPECTRUM FOR X-RAYS

DRIVEN MAGNETIC RECONNECTION:

✓ BROAD AND HARD PARTICLE SPECTRA IF σ≥30 AND κ>10⁸ [Sironi & Spitkovsky 11b]

- FOR THIS LARGE κ WIND LIKELY TO DISSIPATE BEFORE SHOCK [Kirk & Skjeraasen 03]

RESONANT CYCLOTRON ABSORPTION:

SPECTRA AND ACCELERATION EFFICIENCY DEPEND ON ENERGY FRACTION IN IONS: U_i/U_{TOT}=0.8-0.6, γ=1.5-3, ε_{ACC}=0.3-0.03 [Hoshino+ 92, EA & Arons 06; Stockem+ 12]

 \checkmark HIGHER σ IMPLIES FASTER ACCELERATION

- NO ACCELERATION IF $\kappa > m_i/m_e$

PARTICLE ACCELERATION MECHANISMS (MORE RECENTLY PROPOSED)

SHOCK CORRUGATION

FORMULATED TOGETHER WITH B DISSIPATION [Lemoine 17, Lyutikov+12]
 INTERESTING SCENARIO FOR SPEEDING UP FERMI PROCESS

TURBULENT ACCELERATION AT THE SHOCK

- ASSUMES DIFFERENT TURBULENCE LEVELS AT DIFFERENT SHOCK LATITUDES [Giacinti & Kirk 18]

- PRODUCES HARD (STEEP) SPECTRA FOR LOW (HIGH) TURBULENCE LEVEL

- INTERESTING LATITUDE DEPENDENCE OF SPECTRAL INDEX

- ACCELERATES ONE SIGN OF CHARGES PREFERENTIALLY

- ANISOTROPIC FIELD HELPS PROVIDING THE TURBULENCE [Cerutti & Giacinti 20] - SPECTRUM HARDENS WITH INCREASING MAGNETIZATION

ACCELERATION BY HIGH σ TURBULENCE

- ENERGY DEPENDENT ANISOTROPY OF PARTICLE DISTRIBUTION MIMICS FLAT PARTICLE SPECTRA AT LOW ENERGY [Comisso+ 18,19,20, Luo+21]

- WHERE? ON WHAT SCALES? MAXIMUM ENERGY?

- IMPORTANT BROAD IMPLICATIONS!

PARTICLE ACCELERATION MECHANISMS: SUMMARY OF REQUIREMENTS

HOWEVER SEE VARIANTS

DRIVEN MAGNETIC RECONNECTION

MAGNETIZATION: REQUIRES HIGH

PLASMA MULTIPLICITY: REQUIRES HIGH

ION CYCLOTRON ABSORPTION IN ION DOPED PLASMA

PLASMA MULTIPLICITY: REQUIRES LOW

TAKE HOME MESSAGE

NEBULAR DYNAMICS AND HIGH ENERGY EMISSION PROPERTIES

MODELLING OF RADIO EMISSION $\kappa \approx \text{few} \times 10^3$ AND $\Gamma > \text{few} \times 10^6$ VIABLE

MODELLING OF MULTIFREQUENCY VARIABILITY OF INNER NEBULA

ACCELERATION OF LOW AND HIGH ENERGY PARTICLES IN DIFFERENT REGIONS

IMPLICATIONS ON ACCELERATION MECHANISMS

NEBULAR DYNAMICS AND HIGH ENERGY EMISSION PROPERTIES

TOO LARGE FOR FERMI ACCELERATION BUT TURBULENCE MIGHT HELP

MODELLING OF RADIO EMISSION $\kappa \approx \text{few} \times 10^3$ AND $\Gamma > \text{few} \times 10^6$ VIABLE

ION CYCLOTRON VIABLE

MODELLING OF MULTIFREQUENCY VARIABILITY OF INNER NEBULA

ACCELERATION OF LOW AND HIGH ENERGY PARTICLES IN DIFFERENT REGIONS LOW ENERGY FROM TURBULENT ACCELERATION IN THE NEBULA?

NEWS FROM THE >100TeV (UHE/EHE?) GAMMA-RAYS

THE CRAB @>100 Tev

 $1 \text{ TeV} \leq \epsilon_{\gamma} \leq 1 \text{PeV}$

THIS ALREADY CONSTRAINS B-FIELD!!!

$$\frac{dN}{d\epsilon_{\gamma}} = 8.2 \times 10^{-14} \left(\frac{\epsilon_{\gamma}}{10 \text{ TeV}}\right)^{-\Gamma} \text{cm}^{-2} \text{ s}^{-1} \text{ TeV}^{-1}$$

$$1 \text{ T}$$

 $\Gamma = 2.9 + 0.19 \log_{10}(\epsilon_{\gamma}/10 \ TeV)$

IN YOUNG ENERGETIC SYSTEMS ACCELERATION IS LIKELY LOSS LIMITED

E	$6\pi(mc^2)^2$
$t_{acc} = \frac{1}{e\xi_e Bc} < t_{los}$	$\sigma_s = \frac{1}{\sigma_T c B^2 E}$

THE CRAB @>100 Tev

$$\frac{dN}{d\epsilon_{\gamma}} = 8.2 \times 10^{-14} \left(\frac{\epsilon_{\gamma}}{10 \text{ TeV}}\right)^{-1} \text{ cm}^{-2} \text{ s}^{-1} \text{ TeV}^{-1}$$

$$1 \text{ TeV} \le \epsilon_{\gamma} \le 1 \text{ PeV}$$

$$\Gamma = 2.9 + 0.19 \log_{10}(\epsilon_{\gamma}/10 \text{ TeV})$$

 $\epsilon_{\gamma}^* = 1.1 \text{ PeV}$ IC ON CMB $E_e \approx 2.15 \left(\epsilon_{\gamma} / \text{PeV} \right)^{0.77} \text{PeV}$ $E_{\rho}^{*} \approx 2.4 \text{ PeV}$ $E_{max} \approx 6 \ PeV \ \xi_e^{1/2} \ B_{-4}^{-1/2}$ $B_{\rm max} \approx 6.5 \times 10^{-4} \xi_e^{1/2} {
m G}$

EXTENDED SED AND ITS IMPLICATIONS

 $B_{\rm SED} \approx 112 \ \mu {
m G}$

EMITTING PARTICLES:

$$\frac{dN_e}{dE_e} \propto E^{-3.42} \exp[-(E/2.15 \text{ PeV})^2] \qquad E \ge 0.76 \text{ TeV}$$

OTHER ESTIMATES $E_0 \approx 0.3 - 0.5 \text{ TeV}$

[Bucciantini, Arons, EA 2011, Torres+ 2013]

41

CRAB FLARES

CRAB FLARES AND DIPS

 $\xi_e \approx 1$ required in any case

MAGNETIC RECONNECTION? [Cerutti+ 12,13,+++; Sironi & Cerutti 17]

RATE POSSIBLY TOO LOW... MAYBE EXPLOSIVE RECONNECTION? [Yuan+ 2016]

FLUX IN THE 100-300 MeV RANGE ALSO SHOWS DIPS [Pshirkov + 20]

MAGNETIC FIELD VARIATIONS IN THE INNER NEBULA? [Bykov + 12]

B-FIELD ENHANCEMENT BY A FEW IMPLIES BIG CHANGES IN CUT-OFF REGION
IN ADDITION DOPPLER BOOSTING AVAILABLE IN OBLIQUE REGIONS OF TS

MULTI-WAVELENGTH SIGNATURES?
ACCELERATION MECHANISM?

MULTIPLE POPULATIONS?

$$\frac{dN_e}{dE_e} \propto E^{-2.4} \exp[-(E/0.8 \text{ PeV})^2]$$
$$W_{e,1} \approx 8 \times 10^{48} \text{ erg}$$
$$B_1 \approx 110 \ \mu\text{G}$$

PROTONS?

$$t_{\rm esc} = R_N^2 / D_B \approx 300 \text{ yr } B_{-4} E_{16}^{-1}$$

$$L_{\gamma} = W_p / t_{pp} = \dot{E}_p \ t_{\rm esc} / t_{pp}$$

 $\dot{E}_p \sim 3 \times 10^{36} \text{erg/s} \approx \text{few \%} \dot{E}$

FOR DIRAC DELTA CASE AND BOHM DIFFUSION

ACCOUNT FOR TIME-EVOLUTION

FOR DIRAC DELTA AND BOHM DIFFUSION

 $Q_p(E) \propto \delta(E-m_pc^2\Gamma)$ [EA & Arons 06; EA, Guetta, Blasi 03] IONS AT THIS LEVEL IRRELEVANT FOR ACCELERATION UNLESS TINY SHOCK SECTOR

PROTONS?

$$\frac{dN_p}{dE_p} \propto E_p^{-2} \exp(-E_p/30 \text{ PeV})$$

$$\frac{dN_p}{dE_p} \propto \delta(E_p - 10 \text{ PeV})$$

$$_{\rm pp} = 1.5 \times 10^7 \ (n/10 \ {\rm cm}^{-3})^{-1} \ {
m y}$$

 $L_\gamma pprox W_p / t_{pp}$
 $W_p pprox 3 \times 10^{46} \ {
m erg}$

DIFFERENT ENERGY DISTRIBUTION AND PRESCRIPTION FOR ESCAPE [Liu & Wang 21]:

 $\dot{E}_p \le (10 - 50) \% \dot{E}$

CAN ONE STILL REPRODUCE THE OVERALL SED?

47

SUMMARY AND CONCLUSIONS

- NEBULAR DYNAMICS AND PLASMA PROPERTIES:
- 3D MHD SIMULATIONS NEEDED TO FULLY ACCOUNT FOR MORPHOLOGY AND SPECTRUM
- σ > A FEW REQUIRED AT TS
- TURBULENCE AND DISSIPATION IN THE BULK OF THE NEBULA
- BUT SED IMPOSES AVERAGE FIELD $\,\sim\,100\mu G$

PARTICLE ACCELERATION MECHANISMS:

- FERMI MECHANISM HELPED BY CORRUGATION IN EQUATORIAL REGION?
- TURBULENCE ALSO HELPS WITH RECONNECTION AT TS?
- RADIO PARTICLES DO NOT NEED TO BE PART OF THE FLOW AND SPECTRUM CAN RESULT FROM ACCELERATION IN HIGH σ TURBULENCE
- MULTIPLICITY CAN BE SMALL ENOUGH FOR ION CYCLOTRON... BUT ENOUGH IONS?

- CRAB IS A LEPTONIC PEVATRON, BUT ALSO HADRONIC AND TO WHAT LEVEL? 48