Gamma-Ray Bursts, Cosmic-Rays and Neutrinos

Eli Waxman Weizmann Institute of Science

CDY initiative, "NYC", Sep. 2021

This talk

- Why UHECR are interesting
- Why GRBs are likely candidate sources
- What we know and don't know about UHECRs
- What the experimental status of testing the GRB-CR association is
- What the prospects are for more conclusive experimental tests in the near future

UHECR: The acceleration challenge

• A lower limit to the power required:

$$V = \frac{1}{c} \dot{\Phi} \approx \frac{1}{c} \frac{BR^2}{\frac{R}{v}} = \frac{v}{c} BR \implies E < \frac{\beta Z e B R}{\Gamma} ,$$

$$L > 4\pi R^2 \Gamma^2 \frac{B^2}{8\pi} \beta c > \frac{\Gamma^2}{\beta} \left(\frac{E/Z}{10^{11} \text{GeV}}\right)^2 10^{12} L_{\text{Sun}}.$$
[Lovelace 76; EW 95; Norman et al. 95; Lemoine & EW 09]

Few candidate sources.
 A challenge to theory:
 Constructing an acceleration mechanism,
 that efficiently utilizes the full potential.

UHECR: Candidate sources

• EM acceleration: $L > 10^{12} \frac{\Gamma^2}{V/c} \left(\frac{E/Z}{10^{11} \text{GeV}}\right)^2 L_{\text{sun}}$.

[Lovelace 76; EW 95; Norman et al. 95; Lemoine & EW 09]

- Z > 10 a handful of candidates.
- Protons at UHE:
 2 candidate transient sources,
 Rapid mass accretion onto BHs.
 - Gamma-ray bursts (GRB), newly formed solar mass BHs;

[Vietri 95; Milgrom & Usov 95; EW 95]

 Tidal disruption of stars (TDE) by massive BHs at galaxy centers, may produce "GRB-like" jets.

[Gruzinov & Farrar 09; Wang & Liu 16]

(- Young, ms, 10¹³G Neutron Stars? If they exist... [Arons 03;... Lemoine et al. 15].)

UHECR: Key observational constraints

- → Combined constraints on sources' energy production rate, spectrum and composition (degenerate)
- Composition at Earth:
 A (more) direct constraint on source composition
- (Angular distribution- no strong anisotropy/source association)

>10¹⁰GeV flux & spectrum

- Protons: strong (GZK) suppression expected above $5x10^{19}eV$, due to $p + \gamma[CMB] \rightarrow N + \pi$.
- Suppression observed, consistent with GZK.

>10¹⁰GeV flux & spectrum

- Protons: strong (GZK) suppression expected above $5x10^{19}eV$, due to $p + \gamma[CMB] \rightarrow N + \pi$.
- Suppression observed, consistent with GZK.

Alternative explanations

• Proton sources with a flat spectrum,

$$E^{2} \frac{d\dot{n}}{dE} = Const = (5 \pm 2)10^{43} \frac{\text{erg}}{\text{Mpc}^{3}\text{yr}}.$$
[EW 95; Bahcall & EW 03; Katz & EW 09]
(Flat spectra observed at a wide range

of systems, commonly attributed to Fermi shock acceleration).

• Z>>1 sources with Acceleration cutoff at $E=5x10^{19}eV$, $Q(>10^{19}eV) \approx 10^{44} \frac{erg}{Mpc^{3}yr}$.

>10¹⁰GeV composition- X_{max}

 Main handle: X_{max} = Atmospheric Depth (g/cm²) of max # of rel. shower particles. < X_{max}>, Var(X_{max}) decrease with atomic mass A (at fixed E).

>10¹⁰GeV Air shower composition constraints

 Auger data commonly interpreted as Transition to heavy (N) at high E, Dominant p/He component to 10^{19.5}eV.

>10¹⁰GeV Air shower composition constraints

- Auger data commonly interpreted as Transition to heavy (N) at high E, Dominant p/He component to 10^{19.5}eV.
- Large uncertainties
 - HiRes/Auger/TA discrepancies.

>10¹⁰GeV Air shower composition constraints

- Auger data commonly interpreted as Transition to heavy (N) at high E, Dominant p/He component to 10^{19.5}eV.
- Large uncertainties
 - HiRes/Auger/TA discrepancies.
 - Sys + Interaction model uncertainties.
 - Data inconsistent with (all) models, implies unaccounted for systematics (experimental and/or theoretical).
 - Is the model uncertainty spanned by the 'generator' span (QGSJET, EPOS, SIBYLL)?
- Composition constraints- Inconclusive.
- Progress requires:
 - <10% exp. sys. uncertainty.
 <10% uncertainty (σ, elasticity,...) at
 ~300TeV, forward scattering.

[e.g. Pierog 17]

Mixed composition models- Challenges

- Ad hoc assumptions
 - * Acceleration
 - Cutoff at $E = Z \times 10^{9.2} \text{GeV}$ -

A chance coincidence with p-GZK.

 $-E^2 \frac{d\dot{n}}{dE} \propto E$ -

Unknown acceleration process.

- * Composition @ source H : He : N = 10% : 60% : 30% -Unique environment.
- Do not reproduce large σ(X_{max}) above 10¹⁹eV.
- A proton fraction $f_p \cong 0.1$ above 10^{19} eV significantly improves (5 σ) the fit. [e.g. Muzio, Unger & Farrar 19]

UHECR: Key observational constraints

• Flux & Spectrum:

Proton sources with a flat spectrum,

$$E^{2} \frac{d\dot{n}}{dE} = Const = (5 \pm 2)10^{43} \frac{\text{erg}}{\text{Mpc}^{3}\text{yr}}$$
OR

Z>>1 sources with

Acceleration cutoff at E=5×10¹⁹eV,

$$Q(> 10^{19} \text{eV}) \approx 10^{44} \frac{\text{erg}}{\text{Mpc}^3 \text{yr}}.$$

• Composition: A robust conclusion cannot be drawn. Auger data commonly interpreted as transition to heavy (N) at high E; A significant proton fraction, $f_p \cong 0.1$, preferred.

Widely considered GRB models

• GRBS are the brightest known objects

 $L(\sim 1 \text{MeV}) \approx 10^{52} \text{erg/s},$

T∼10 s,

 $\Delta t \sim 10 \text{ ms}$ observed in a significant fraction, 100 MeV photons observed in some.

- Most models: radiation produced by internal energy dissipation in a highly relativistic jet, driven by rapid mass accretion onto a compact object (BH/NS).
 γ>100 based on 100 MeV photons' escape.
- 2 model classes
 - e-p jet, dissipation and particle acceleration via internal collisionless shocks [partial understanding of micro-physics].
 - EM jet, dissipation and particle acceleration via magnetic reconnection [limited understanding of micro-physics].

Common e-p jet models

Electrons accelerated by collisionless shocks.

٠

٠

- In the jet frame, the internal & reverse shocks are mildly relativistic.
 - $E^2 \frac{d\dot{n}}{dE}$ = Const. e⁻ spectrum.
 - Magnetic field near equipartition.
- Radiation produced by synchrotron and IC emission.
 - Some challenges in explaining the γ -ray spectra ("photospheric models")
 - "Afterglow" emission well accounted for with $E^2 \frac{d\dot{n}}{dE}$ = Const and near equipartition B.

p acceleration in GRBs

[EW 95]

- In the region where e⁻ are accelerated, p would also be.
- Max p energy independent of r, Internal & Reverse shocks,

$$E < 10^{21} \left(\frac{100}{\gamma}\right) \left(\frac{L}{10^{52} \text{erg/s}}\right)^{1/2} \text{eV}$$

- Reverse shock: Most of the kinetic energy dissipated, Accelerated p escape downstream to the ISM.
- → Escaping UHECRs carry a significant fraction of the energy.
- Heavy nuclei dissociated by radiation field.

Extra-Galactic flux of GRB UHE p's

- Energy production rate $\gamma: R_{z=0}\overline{E_{\gamma}} = \frac{10^{52.3\pm0.7} \text{erg}}{1 \text{Gpc}^{3} \text{yr}} = 10^{43.3\pm0.7} \frac{\text{erg}}{\text{Mpc}^{3} \text{yr}}$ p: $E^{2} \frac{d\dot{n}}{dE} \approx \frac{Q_{p}}{Q_{e}} \frac{Q_{e}}{\ln 10^{8}} \approx \frac{Q_{p}}{Q_{e}} 10^{42.3\pm0.7} \frac{\text{erg}}{\text{Mpc}^{3} \text{yr}}$
- The proton generation rate required to produced the full >10¹⁹eV CR flux:

$$E^2 \frac{d\dot{n}}{dE} = 10^{43.7 \pm 0.2} \frac{\text{erg}}{\text{Mpc}^3 \text{yr}}$$

The fraction of >10¹⁹eV CR flux contributed by GRB protons:

$$f_{p,\text{grb}} \approx 0.1 \frac{Q_p}{Q_e} = 1 \frac{Q_p}{10Q_e}.$$

٠

If GRBs are produced by e-p jets, they are likely to produce a p-flux, which is a significant fraction of the $> 10^{19}$ eV CR flux (and a small fraction at lower energy). [EW 95]

Identifying a GRB-UHECR association

- Direct p-γ association impossible, Large delay in arrival time of charged p's compared to γ's, Due to magnetic deflections.
- A possible signature- VHE v's from $p(A)-p/p(A)-\gamma \rightarrow charged pions \rightarrow v's,$ $\pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \rightarrow e^{+} + \nu_{e} + \nu_{\mu} + \overline{\nu_{\mu}},$ $E_{\nu}/(E_{A}/A)\sim 0.05.$

The expected VHE ν flux

• For cosmological proton sources,

$$E^2 \frac{d\dot{n}}{dE} = Const. = (0.5 \pm 0.2) 10^{44} \frac{\text{erg}}{\text{Mpc}^3 \text{yr}}$$
,

• An upper bound to the v intensity (all $p \rightarrow \pi$):

$$E^{2} \frac{dj_{\nu}}{dE} \leq E^{2} \Phi_{\text{WB}} = \frac{3}{8} \frac{ct_{H}}{4\pi} \zeta \left(E^{2} \frac{d\dot{n}}{dE} \right) = 10^{-8} \zeta \frac{\text{GeV}}{\text{cm}^{2} \text{s sr'}},$$

$$\zeta = 0.6,3 \text{ for } f(z) = 1, (1+z)^{3}.$$
[EW & Bahcall 99; Bahcall & EW 01]

[Berezinsky & Zatsepin 69]

- Saturation of the bound expected at
 - ~10¹⁰GeV GZK v's IF UHECR dominated by p's.
 - <~10⁶GeV IF CR production follows star-formation activity. Most stars formed in rapidly star-forming galaxies, which are CR "calorimeters" for E/Z <~ 10⁶ GeV=1 PeV -All E/Z <~ 1 PeV CR energy lost to π production in ISM.

GRB v's

• Neutrinos are produced efficiently only at the smallest collision radii : $\tau_{\gamma p} = 1 \frac{L_{52}}{\gamma_{300}^4 \Delta t_{10} \text{ms}} \begin{cases} 1 & E > E_b \\ E/E_b & E < E_b \end{cases}$ $= 1 \tau_{\gamma \gamma} (100 \text{MeV}) \begin{cases} 1 & E > E_b \\ E/E_b & E < E_b \end{cases}$ $E_b = 10^7 (\gamma/300)^2 \text{ GeV}$ [EW & Bahcall 97]

p's lose $\approx 10\%$ of their energy to π 's, At ~10ms Internal Shocks. Prompt v's: $\Phi_{grb} \approx 0.1 f_{p,grb} \Phi_{WB}$ (at E>E_b/20).

GRB v's: Predictions vs Observations

- Imply $f_{p,grb} < 1$ or $\tau_{\gamma\gamma}(100 \text{MeV}) < 1$, or both.
- Limited implications to common GRB models.

Significantly larger detectors are required for detection/ more stringent constraints.

[EW & Bahcall 97; Ahlers et al. 11; Hummer, Baerwald, and Winter 12; Li 12; He et al 12 ... Tamborra & Ando 15, Bustamante et al. 17]

Identifying the UHECR sources

- IceCube detects $\Phi_{\nu} \approx \Phi_{WB}$ at 50 TeV < E_v < few PeV.
- The saturation of the bound suggests an association with UHECR sources, Consistent with the expected saturation for CR sources residing in starforming galaxies ("PeV calorimeters"). [e.g. Murase & EW 16]

Identifying the UHECR sources

- IceCube detects $\Phi_{\nu} \approx \Phi_{WB}$ at 50 TeV < E_v < few PeV.
- The saturation of the bound suggests an association with UHECR sources, Consistent with the expected saturation for CR sources residing in starforming galaxies ("PeV calorimeters").
- $\Phi_{\nu} \ll \Phi_{WB}$ is expected for "Prompt v emission", associated with transient photon production at the source, for all candidate sources.
- Identifying the sources is, and will remain, challenging.
 No significant v association with EM sources in current IceCube data.

[arXiv:2109.05818]

Temporal prompt ν-γ association
 is the most promising way to source identification.
 Requires:

Wide field EM sky monitoring,

Real time alerts for follow-up of HE ν events,

and

Significant [x10] increase of the v detector mass at ~100TeV.

GRBs & heavy nuclei

- Heavy nuclei in HL (10⁵²erg/s) GRBs
 - May be entrained (for a jet propagating through a pre-SN star) or formed in cold (<<1MeV) outflows, and
 - May survive disintegration if accelerated at r~10¹⁵cm.

[e.g. Lemoine 02, Beloborodov 03, Metzger et al. 11, Murase et al. 12, Globus et al. 15, Winter et al. 15, Murase et al 18]

Heavy nuclei survival is more likely in LL, L<10⁴⁹erg/s, GRB jets.
 Have been suggested as high Z UHECR sources,

[e.g. Murase et al. 08, Horiuchi et al. 12, S. Shibata & Tominaga 15, Zhang et al. 18]

and as IceCube neutrino sources.

[e.g. Murase et al. 06, Gupta & Zhang 07, Murase & Ioka 13, Liu & Wang 13]

** Requires: UHECR energy > 100 e⁻ energy.

** Not clear that LL GRBs are produced by relativistic jets. They are likely produced by "shock breakout" in supernovae with compact progenitors- no UHE CRs and v's.

Summary & Outlook

- HL, 10⁵²erg/s, GRB jets are capable of accelerating p's to 10²⁰eV.
 - $E^2 \frac{dn}{dE} \approx Const.$, $f_p \ge 10\%$ at $E > 10^{19} \text{eV}$ (for e-p dominated jets),
 - $\Phi_{v,grb} \approx 0.01(0.1) f_p \Phi_{WB}$ at 0.1(1) PeV (for common γ production models).
- Current experimental constraints
 - UHECRs: Heavy composition at $E > 10^{19}$ eV, $f_p \approx 10\%$ allowed & preferred. Experimental & HE interaction model uncertainties (inconsistencies) \rightarrow Large composition uncertainty, f_p may be $\gg 10\%$.
 - HE v's: $\Phi_{v,grb} < 0.01 \Phi_{WB}$ at 0.1 PeV.
- What is required for a conclusive test of the model/UHECR source identification?
 - * A (reliable) measurement of the p-fraction at UHE.
 - * Prompt γ - ν coincidence.
- Can be addressed by next generation CR, v & γ telescopes.
 - * UHECRs: Auger', TA.
 - * v's: $0.1\Phi_{WB} = 10^{-9} \text{GeV/cm}^2 \text{s sr} \otimes 10^8 10^{10} \text{GeV}$ (Radio).
 - * v's: M_{eff} ~10 Gton @ $10^5 10^8 \text{GeV}$ (IceCube Gen 2, KM3NeT, GVD-2).
 - * Wide field EM monitoring, X/γ telescopes (real time alerts).