Particle acceleration in GRBs

Andrei Beloborodov Columbia University

Topics:

- Collisionless shocks
- Radiation-mediated shocks
- Magnetically dominated jets
- Pair creation
- Free neutrons
- High-energy gamma-ray emission
- Neutrino emission
- UHECRs

1990s: cooking phenomenological models

Meszaros 2001

GENERATION OF MAGNETIC FIELDS IN THE RELATIVISTIC SHOCK OF GAMMA-RAY BURST SOURCES

MIKHAIL V. MEDVEDEV¹ AND ABRAHAM LOEB² Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 Received 1999 April 26; accepted 1999 July 14

ABSTRACT

We show that the relativistic two-stream instability can naturally generate strong magnetic fields with $10^{-5}-10^{-1}$ of the equipartition energy density, in the collisionless shocks of gamma-ray burst (GRB) sources. The generated fields are parallel to the shock front and fluctuate on the very short scale of the

Are particles accelerated in shocks?

PARTICLE ACCELERATION IN RELATIVISTIC COLLISIONLESS SHOCKS: FERMI PROCESS AT LAST?

ANATOLY SPITKOVSKY¹ Received 2008 February 28; accepted 2008 May 21; published 2008 July 8

$$t_{\rm acc} = \eta \, \frac{r_{\rm L}}{c} \longrightarrow t_{\rm scat} \sim \frac{r_{\rm L}^2}{\lambda c}$$

particle scattering by magnetic filaments:

 $\gamma_{\max,i} \approx 0.25 \, \gamma_0(\omega_{pi} t)^{1/2}$

In GRB blast waves, particles reach PeV energies

Sironi et a. 2013

role of initial (upstream) magnetization: $\sigma \equiv \frac{B_0^2}{4\pi n_0 mc^2}$

 $\sigma > 10^{-4}$ suppresses turbulence and particle acceleration

> Lemoine, Pelletier 2010 Sironi et a. 2013

Nonthermal component is ~10% at low sigma and suppressed at modest sigma

Internal shocks in GRB jets carry transverse magnetic field => Fermi acceleration does not operate => scenario of shock synchrotron does not work

The synchrotron shock scenario was not really required or preferred by data. GRB spectra are better explained as dissipative photosphere emission.

Nonthermal photospheric emission

Thompson 1994 Eichler and Levinson 2000 Rees Meszaros 2005 Pe'er et al. 2006 Giannios 2008 AB 2010 Levinson 2012 Thompson, Gill 2014

Nonthermal photospheric emission

=> 1. σ = 0.01 - 0.1
2. Nonthermal heating (energetic particle injection) comparable to thermal

Are particles accelerated in subphotospheric shocks?

(+ sources of TeV-PeV neutrinos?)

Full simulation (radiative hydrodynamics)

Full simulation (radiative hydrodynamics)

AB 2017

Magnetized plasma: $\sigma \sim 0.01 - 0.1$

AB 2017

Neutron component in GRB jets

Derishev et al. 1999, 2003 Bahcall, Meszaros 2000 AB 2003, 2010

Neutron component in GRB jets

internal shocks

Derishev et al. 1999, 2003 Bahcall, Meszaros 2000 AB 2003, 2010

converter acceleration?

Inelastic nuclear collisions generate neutrinos and nonthermal e+-

$$\pi^{\pm} \to \mu^{\pm} + \nu_{\mu}, \bar{\nu}_{\mu}$$

$$\downarrow$$

$$e^{\pm} + \nu_{e}, \bar{\nu}_{\mu} + \bar{\nu}_{e}, \nu_{\mu}$$

 \Rightarrow Neutrino emission with energies

$$\epsilon \sim \Gamma m_{\pi} c^2 \approx 30 \left(\frac{\Gamma}{600}\right) \left(\frac{1+z}{2}\right)^{-1} \text{ GeV}$$

Magnetically dominated jets

$$\sigma = \frac{B^2}{4\pi\rho c^2} > 1$$

Particles are energized by magnetic reconnection/turbulence

Thompson 1994, 2006 Spruit et al, 2001 Lyutikov, Blandford 2003 Zhang, Yan 2011

Radiative turbulence:

- stochastic acceleration is suppressed by radiative losses Nattila, AB 2021
- impulsive acceleration $\gamma_e \sim \sigma_e = \frac{B^2}{4\pi n m_e c^2}$ followed by fast cooling
- small pitch angles $\theta \sim 0.1$ affect the synchrotron spectrum
- synchrotron spectral peak at $E_{\rm peak} \propto B \sigma_e^2 \propto L^{1/2} R^{-1} \sigma_e^2$

Radiative reconnection:

 nonthermally accelerates particles and also creates an effective temperature of ~100 keV through random bulk motions.
 The resulting emission spectrum is different from observed CPBs
 AB 2017 Werner et al. 2019 Sironi & AB 2020 Mehlhaff et al. 2021

The resulting emission spectrum is different from observed GRBs.

Sobacchi, Sironi, AB 2021

Sridhar et al. 2021

~80% of energy is dissipated through drag on bulk motions

Sironi & AB 2020

GRB jets are filled with pairs $(n_{\pm} > n_i)$

Dissipation creates pairs

(internal shocks, nuclear collisional heating, reconnection, turbulence)

Pair freeze out:
$$Z_{\pm} = \frac{n_{\pm}}{n_i} \gtrsim 10$$

Thompson, Madau 2000; AB 2002

External medium gets filled with e+- pairs

$$R_{\pm} \approx 10^{17} \left(\frac{E_{\rm iso}}{10^{54} {\rm erg}}\right)^{1/2} {\rm cm}$$

independent of ambient density

$$R_{\pm} \approx 10^{17} \left(\frac{E_{\rm iso}}{10^{54} {\rm erg}}\right)^{1/2} {\rm cm}$$

independent of ambient density

Early gamma-ray afterglow = IC scattering of prompt radiation

emerges when $~Z_{\pm} < 10^4$ $(R pprox 10^{16} \, {
m cm})$

GeV afterglow peaks before deceleration radius

 $Z_{\pm}(R)$ (not deceleration!) shapes the GeV afterglow peak – its delay and sudden onset

Inverse Compton emission from THERMAL plasma:

 $h\nu_{\rm max} \sim \Gamma \gamma_{\rm th} m_e c^2$

remaining parameter: external density A/R^2

(WR wind: $A \sim 10^{11} \, rac{ ext{g}}{ ext{cm}}$)

(progenitor wind)

explosion energy: GRB energy / (efficiency ~0.2)

scattering of the prompt GRB radiation in the blast wave (Monte-Carlo calculation)

AB, Hascoet, Vurm (2014)

WR progenitor wind parameter A:

$$\rho_{\rm w} = \frac{\dot{M}_{\rm w}}{4\pi R^2 v_{\rm w}} = \frac{A}{R^2}$$

expected $A \sim 10^{11} \frac{\text{g}}{\text{cm}}$

Fits of GeV flash in 7 GRBs:		
$A_{11}:$ 2.	5	0.6
1.	6	2
1.	5	0.35
1.	5	

Hascoet, Vurm, AB (2015)

Are particles accelerated in pair-loaded shocks?

Groselj, Sironi, AB, in preparation

pair loading factorupstream magnetization $Z_{\pm} = \{0, 2, 4, 6, 12\}$ $\sigma = \{0, 5 \times 10^{-6}, 10^{-5}, 3 \times 10^{-5}, 10^{-4}\}$ $\gamma_0 = 50$

(particle-in-cell simulations; grid size up to $5,400 \times 295,000$)

Are particles accelerated in pair-loaded shocks?

Groselj, Sironi, AB, in preparation

(particle-in-cell simulations; grid size up to $5,400 \times 295,000$)

• Fermi acceleration if
$$\sigma < \sigma_{\rm F} \sim \frac{10^{-4}}{(Z_{\pm} + 1)^4} \left(\frac{E}{\gamma_0 m_i c^2}\right)^{-2} \quad (t_{\rm scat} < t_{\rm Larmor})$$

no ion acceleration; limited energy range for electron acceleration

Groselj, Sironi, AB, in preparation

Groselj, Sironi, AB, in preparation

Ultra-high-energy cosmic rays?

- not through Fermi acceleration in internal shocks

- not through Fermi acceleration in external shocks

 $\begin{array}{lll} \mbox{Converter? (photomeson: $n \leftrightarrow p$)} & \mbox{threshold (fluid frame):} \\ & \mbox{Derishev et al. 2003} & \gamma_p E_{\rm ph} > 100 \, {\rm MeV} \end{array}$ $\sigma_{\nu} \sim 10^{-28} - 5 \times 10^{-28} \, {\rm cm}^2 & \mbox{small radii: injection problem} \\ \mbox{At large radii: $R > R_{\pm} \approx \left(\frac{E_{\rm iso}}{10^{54} \, {\rm erg}}\right)^{1/2} \, {\rm cm}} & \mbox{runaway acceleration if} \\ & \mbox{low photomeson optical depth τ_{ν}} \end{array}$

Summary

GRB delusions:

