Multimessenger Emission from GRBs

Tsvi Piran

Elly Leiderschneider, Ofek Birnholtz, Ehud Nakar, Evgeny Derishev Shotaro Yamasaki, Matteo Pais

CDY Sept 1 2021

Outline

- GW from GRBs
- Jet-GWs from Jets: Birnholtz & TP PRD, 2013; Leiderschneider & TP arXiv:2107.12418
- Hidden Jets: TP + arXiv 1704.08298; ApJ, 2019
- TeV emission from GRBs Afterglows : Derishev & TP ApJL, 2019, arXiv: 2021.12035

Binary Neutron Stars Gravitational Waves

Supernova and Long GRBs

98bw GRB 980425

Collapsars

GW from Supernova

$$h = \epsilon \frac{GM}{c^2 d} = \epsilon \frac{r_g}{d} \qquad \nu = \sqrt{G\rho}$$

Once upon a time (late 70ies)

 $h=10^{-21}$ @ khZ <=> $E_{gw}=10^{51}$ erg @ 10 Mpc

GW from Supernova

More Gravitational Waves

Gravitational waves from the jet acceleration process (TP 2002; Birnholtz & TP 2014; Liedershneider & TP 2021 Segalis & Ori 2001)

10⁵⁰ erg were standing still and then they suddenly they move at c => This must produce gravitational waves

Weinberg - GW from particle collisions

The sun emits 10¹⁵ ergs/sec in GW (Weinberg)

The typical energy of the sun's gravitons is \sim keV with frequency of 10¹⁸ Hz

Only 1 in ~10²⁵ scatterings produces a graviton

A "quarter" of the collision give us the results of an instantaneously accelerated particle.

The ZFL approximation

(Instantenous acceleration)

$$h^{TT}(\theta_{\mathrm{v}}) = h_{+} + ih_{\mathrm{x}} = \frac{2\mathcal{E}\beta^{2}}{r} \frac{\sin^{2}\theta_{\mathrm{v}}}{1 - \beta\cos\theta_{\mathrm{v}}} e^{2i\phi}.$$

Realistic light curve

A more realistic configuration

A jet

Two sided jets

Different acceleration models

The crossover frequency

A transition frequency from f⁻¹ at low frequency to f^{- α} with α >3/2 at higher frequencies

GW from GRB jets

Assuming that the observed GRB power spectrum reflects the jet output

GW from the jet of GRB 170817

Low frequency ≲1Hz and weak <10⁻²⁴ but possibly detectable with BBO, and DECIGO

Are there better sources?

SN 1997ef

SN 2017iuk (GRB 171205A)

epoch spectroscopic observations of SN 2017iuk, associated with GRB 171205A which display features at <u>extremely high expansion velocities of ~ 100,000 km s⁻¹ within the first day after the burst^{4,5}</u>. These high-velocity components are characterized by chemical abundances different from those observed in the ejecta of SN 2017iuk at later times. Using spectral synthesis models

Very broad absorption lines disappear at later spectrum

Figure 2. The spectral evolution of SN 2017iuk during the first 15 days after the GRB. All spectra are shown as black curves, and they have been de-reddened for Galactic extinction, with the GRB afterglow contribution being subtracted. The simulated emission (red curves) obtained from our synthesis model for some selected spectra are shown as red curves. For the spectral simulation at Day 0.957 an arbitrary constant has been considered, due to the uncertainty in the afterglow component continuum, to match the observed data.

Mazzali et al., 2000

TP, Nakar, Mazzali & TP 2017,2019

Choked iet within a Star

Credit: Matteo Pais

SNe harbor energetic jets

The energy distribution

Credit: Matteo Pais

Some SNe and their Jets

SN	Туре	E_{tot}	M_{ej}	E_j	M_c	$ heta_c$	Comments	ref.
		$[10^{51} \text{ erg}]$	$[M_{\odot}]$	$[10^{51} \text{ erg}]$	$[M_{\odot}]$	[deg]		
1997ef	Ic-BL	20	8	9	0.4	20^{o}	No associated GRB	[16]
1998bw	Ic-BL	50	11	≥ 2	-	-	Associated with a low	[17]
				~ -			luminosity GRB 980425	
2002ap	Ic-BL	4	2.5	0.3	_	_	No associated GRB. No	[18]
p		-					outflow faster than 0.3c.	
2003bg	IIb	5	4.5	1	0.2	20^{o}		[19]
2008D	Ib	6	7	14	_	_	Associated with a faint	[20]
2000D	10	U	/	1.7			x-ray burst	
2016ica	Ic-BI	50	10	> 2	_	_	Associated with a long	[21]
2010jea		50		\sim 2		_	GRB 161219b	

All the SNe are stripped, some associated with *ll*GRBs

GW from the jet (Birnholtz & TP, 14)

Low frequency ≲1Hz and mild <10⁻²³ but detectable with BBO, DECIGO and marginally Einstein Telescope

SGR giant flares?

10⁴⁷ erg in a few millisecond. Is this good enough ?

Summary

- Jet are sources of GW
- The GW could provide excellent diagnostic of the acceleration process
- However, GRBs are most likely too distant to detect their jets even with planned detectors.
- However, hidden jets in SNe might bring us back to detection of SNe from ~10 Mpc

TeV

The Pair Balance model Derishev & TP 2016

 Pairs produced in the upstream
 They are strongly accelerated once crossing the shock

Accelerate the flow
 Produce magnetic
 field via Weibel
 Instability

Some basic features of the Pair-Balance model Derishev & TP 2016

- Saturation at the Klein-Nishina limit $=> \gamma^3 B \approx B_{cr}$
 - $\Rightarrow \gamma_{m} \propto \Gamma$ doesn't hold
- $\tau_{\gamma\gamma} \lesssim 1$ for the IC photons

One zone modeling

Sari, TP, Narayan 98

$$\begin{split} R &= C_{\rm R} \Gamma^2 c t_{\rm obs} / (1+z) \\ E_{\rm kin} &= C_{\rm E} \Gamma^2 M c^2 \\ t_{\rm eff} &= C_{\rm t} \Gamma t_{\rm obs} / (1+z) \\ h \nu_{\rm obs} &= C_{\rm \Gamma} \Gamma h \nu / (1+z) \\ L &= C_{\rm L} \epsilon_r \ (1+z) E_{\rm kin} / t_{\rm obs} \ , \end{split}$$

		density profile
Reference	Wind	ISM
Sari et al. (1998), "SPN98 coefficients" hereafter		$C_{\rm R} = 2, \ C_{\rm t} = 1/\sqrt{2}, \ C_{\Gamma} = 1/\sqrt{2}, \ C_{\rm L} = 17/12^{*}$
Panaitescu & Mészáros (1998b)	$C_{\rm R} \approx 3.1$	$C_{\rm R} \approx 6.5$
Nava et al. (2013)	$C_{\rm R} = 4/5$	$C_{\rm R} = 8/9$
Dai & Lu (1998)	$C_{\rm R} = 4, \ C_{\rm t} = 8\sqrt{2}/3$	$C_{\rm R} = 8, \ C_{\rm t} = 16\sqrt{2}/5$
Derishev & Piran (2019)	$C_{\rm R} = 4, \ C_{\rm E} = 1, \ C_{\rm t} = 4, \ C_{\Gamma} = 1$	$C_{\rm R} = 8, \ C_{\rm E} = 1, \ C_{\rm t} = 8, \ C_{\Gamma} = 1$
Current work (from Derishev 2021),	$C_{\rm R} \approx 2.45, \ C_{\rm E} = 2/9, \ C_{\rm t} \approx 1.16,$	$C_{\rm R} \approx 5.55, \ C_{\rm E} = 6/17, \ C_{\rm t} \approx 0.96,$
"effective coefficients" hereafter	$C_{\Gamma} \approx 0.64, C_{L} = 9/8$	$C_{\Gamma} \approx 0.87, \ C_{L} = 17/16$

One Zone Coefficients

$$\begin{split} R &= C_{\rm R} \Gamma^2 c t_{\rm obs} / (1+z) \\ E_{\rm kin} &= C_{\rm E} \Gamma^2 M c^2 \\ t_{\rm eff} &= C_{\rm t} \Gamma t_{\rm obs} / (1+z) \\ h \nu_{\rm obs} &= C_{\rm \Gamma} \Gamma h \nu / (1+z) \\ L &= C_{\rm L} \epsilon_r \ (1+z) E_{\rm kin} / t_{\rm obs} \end{split}$$

		density profile
Reference	Wind	ISM
Sari et al. (1998), "SPN98 coefficients" hereafter		$C_{\rm R} = 2, \ C_{\rm t} = 1/\sqrt{2}, \ C_{\Gamma} = 1/\sqrt{2}, \ C_{\rm L} = 17/12^{*}$
Panaitescu & Mészáros (1998b)	$C_{\rm R} \approx 3.1$	$C_{\rm R} \approx 6.5$
Nava et al. (2013)	$C_{\rm R} = 4/5$	$C_{\rm R} = 8/9$
Dai & Lu (1998)	$C_{\rm R} = 4, \ C_{\rm t} = 8\sqrt{2}/3$	$C_{\rm R} = 8, \ C_{\rm t} = 16\sqrt{2}/5$
Derishev & Piran (2019)	$C_{\rm R} = 4, \ C_{\rm E} = 1, \ C_{\rm t} = 4, \ C_{\Gamma} = 1$	$C_{\rm R} = 8, \ C_{\rm E} = 1, \ C_{\rm t} = 8, \ C_{\Gamma} = 1$
Current work (from Derishev 2021),	$C_{\rm R} \approx 2.45, \ C_{\rm E} = 2/9, \ C_{\rm t} \approx 1.16,$	$C_{\rm R} \approx 5.55, \ C_{\rm E} = 6/17, \ C_{\rm t} \approx 0.96,$
"effective coefficients" hereafter	$C_{\Gamma} \approx 0.64, C_{L} = 9/8$	$C_{\Gamma} \approx 0.87, \ C_{L} = 17/16$

First Guesses 190114c

- $\gamma \Gamma m_e c^2 > E_{IC} \Rightarrow \gamma \Gamma \approx 10^6$
- @ 70 sec and longer Γ cannot be too large => $\gamma \gtrsim 10^4$
- => Tev is Inverse Compton of Xrays (Consistent with a comparable X-ray luminosity)

Detailed modeling (Derishev & TP 2021)

• Conditions at the emitting region are determined by Γ , B, γ_m , ϵ_{e/ϵ_B}

Early - 90 sec

late - 145 sec

Best Fit Parameters

The fit didn't take into account the "pair balance" model however, the results are fully consistent with it and are inconsistent with standard afterglow modeling

parameter	$t_{\rm obs} = 90 \ {\rm s}$	$t_{\rm obs} = 145 \ {\rm s}$	
Γ	161 (109)	→ 143 (91)	
В	4.4 G (5.7 G)	2.0 G (3.1 G)	
$\epsilon_{ m e}/\epsilon_{ m B}$	20 (21)	36 (41)	
$\gamma_{ m b}$	6500 (5700)	→ 16700 (14400)	
р	2.5	2.5	
Ekin	3×10^{53} erg	3×10^{53} erg	
$\epsilon_{_{ m B}}$	0.0061 (0.0062)	→ 0.0027 (0.0026)	
εe	0.12 (0.13)	0.096 (0.107)	
\dot{M} (wind)	$1.4 \times 10^{-6} \frac{V_w}{3000 km/s} M_{\odot}/yr$	$1.4 \times 10^{-6} \frac{V_w}{3000 km/s} M_{\odot}/yr$	
n (ISM)	2 cm^{-3}	2 cm^{-3}	

- Fast Cooling
- On the edge of KN regime
- $\gamma^{3}B = (1.2 9) \ 10^{12}$

 $\gamma_{m} \propto \Gamma \ \text{doesn't hold}$

- τ_{γγ} ≈ 1 for the IC photons
 (25% of IC power is self absorbed)
- $\epsilon_{\rm B} = 0.006 \rightarrow 0.003$ (Varies)
- Somewhat surprisingly large Γ (large energy, low external density)

Detailed modeling

• Conditions at the emitting region are determined by Γ , B, γ_m , ϵ_{e/ϵ_B}

ϵ_{B} must vary with time

Comparison with other work

Magic 2019 ???

Comparison with other work

Asano & Murase 2020

Wang et al., 2019

Analytic

Yamasaki & Piran 2021 following Nakar et al., 2009*

* Sharp threshold for KN effect must be modified to start at ~100 keV

Analytic

Yamasaki & Piran 2021 following Nakar et al., 2009

Analytic

Yamasaki & Piran 2021 following Nakar et al., 2009

190829A

A strange claim of a single power-law fit

With the error bars of the X-ray slope everything can fit a single power low to the TeV

190829A analytic modeling

Summary

- TeV observations of both 190114c and 190829A seems to require modification of the simple afterglow model.
- A model independent fits for both bursts lead to parameters and evolutionary behavior that are (surprisingly) consistent with the Pair Balance model.

Thanks for the attention