Relativistic Fermi acceleration

Martin Lemoine

Institut d'Astrophysique de Paris

CNRS – Sorbonne Université

- 1. Relativistic Fermi acceleration: general remarks
- 2. Application to particle acceleration in turbulent flows
- 3. Some consequences and some open questions for phenomenology

Collaborators:

Virginia Bresci
Camilia Demidem
Arno Vanthieghem
Laurent Gremillet
Guy Pelletier

(graduate student at IAP)
(PhD 2019, NORDITA, Sweden)
(PhD 2019, SLAC/Stanford)
(CEA, France)
(IPAG, France)

+ A. Bykov (Ioffe), M. Malkov (UCSD), L. Comisso (Columbia), L. Sironi (Columbia)

Extreme Non-Thermal Universe: CDY Institute - June 30, 2021

Microphysics of particle acceleration in the high-energy Universe

$$ightarrow$$
 Lorentz force: $rac{\mathrm{d}m{p}}{\mathrm{d}t} = q\left(m{E} + rac{m{v}}{c} imes m{B}
ight)$... what is the origin of $m{E}$?

<u>1. Acceleration à la Fermi:</u> highly conducting plasma...

 \rightarrow large scale physics (\leftrightarrow very high energies?): corresponds to ideal Ohm's law $E = -v_p x B / c...$

<u>2. "Linear" accelerators:</u> non-MHD flows: $\exists E$

- \rightarrow acceleration can proceed unbounded along E (or at least $E_{\parallel})...$
- → gaps in magnetospheres, reconnection (on small scales)

→ particles interact with a sheared, relativistic turbulent flow on a broad range of scales...

→ particles of different energies experience different accelerator configurations: fine structure smeared out over gyroscale...

<u>NB</u>: as in many astrophysical sources, a huge hierarchy between macroscopic scales (l_c turbulence scale, r_g) and microscopic scales (r_L): $r_g/r_L \sim 10^6$ for a GeV electron in 1G field... a challenge for numerical simulations!

→ particles interact with a sheared, relativistic turbulent flow on a broad range of scales...

→ particles of different energies experience different accelerator configurations: fine structure smeared out over gyroscale...

→ multi-stage, hierarchical acceleration scenarios, from non-ideal processes at the smallest length scales to Fermi-type processes at the highest energies

Microphysics of particle acceleration in the high-energy Universe

$$ightarrow$$
 Lorentz force: $rac{\mathrm{d}m{p}}{\mathrm{d}t}\,=\,q\left(m{E}+rac{m{v}}{c} imesm{B}
ight)\,$... what is the origin of $m{E}$?

<u>1. Acceleration à la Fermi:</u> highly conducting plasma...

 \rightarrow large scale physics (\leftrightarrow very high energies?): corresponds to ideal Ohm's law $E = -v_E x B / c...$

→ two essential characteristics:

1. *E* vanishes in local frame: classification of Fermi scenarios according to geometry of *E* fields

2. scattering is essential to explore *E* fields through cross-*B* transport

Fermi acceleration: the issue of scattering

 \rightarrow generic scaling: $t_{\rm acc} \simeq \frac{t_{\rm scatt}}{\beta_E^2}$ (applies to original Fermi, shock, turbulence... here $\beta_E \lesssim 1$)

 \rightarrow <u>scattering timescale t_{scatt}</u>: time it takes to deflect the particle by an angle of the order of unity,

 $t_{\rm scatt} \sim t_{\rm L}^{lpha} (\ell_{\rm c}/c)^{1-lpha}$ (I_c coherence length scale of turbulence)

... in absence of specific information, assume (too often!): $\alpha \sim 1$ Bohm regime ... however:

Fermi acceleration: the issue of scattering

: extreme accelerator if $\beta_E \sim 1$, synchrotron from e at radiation reaction limit:

$$t_{\rm acc} \simeq \frac{t_{\rm scatt}}{\beta_E^2}$$
 and $t_{\rm acc} \simeq \mathcal{A} t_{\rm L} \Rightarrow \epsilon_{\rm syn,max} \simeq \mathcal{A}^{-1} \frac{m_e c^2}{\alpha_{\rm e.m.}} \sim 100 \,\mathcal{A}^{-1} \,\mathrm{MeV}$

(2) : non-extreme for e, but can reach confinement (Hillas) limit for ions if $\beta_E \sim 1$, $\ell_c \sim$ source size, $\delta B \gtrsim B$

3 : particles decouple from turbulence at high-E, slow scattering...

A case study: shear acceleration

→ in shear acceleration, particles gain energy by exploring varying (motional) electric field configurations¹... motional electric field: $E = -\beta_E \times B$

particles with small mean free paths explore weak gradient of **E** ⇒slow acceleration... particles with near resonant mean free paths explore strong gradient of $E \Rightarrow$ fast acceleration... particles with very large mean free paths do not see E, decouple from flow ⇒ (very) slow acceleration...

The role of the mean free path, and of velocity gradients

 \rightarrow in shear acceleration, particles gain energy by exploring varying (motional) electric field configurations... motional electric field: $E = -\beta_E \times B$... vanishes in frame moving at $\beta_E = E \times B/B^2$

particles with small mean free paths explore weak gradient of E \Rightarrow slow acceleration...

... at x: in frame moving at $\beta_{\rm F}$, $E(x)=0 \Rightarrow$ no acceleration...

... particle gains energy because of the existence of a gradient, which guarantees that the effect of *E* cannot be boosted away everywhere

... in shear acceleration (peculiar scaling!):

$$\dot{t}_{acc} \sim \frac{1}{\beta_E^2} \frac{\left(\beta_E / \nabla \beta_E\right)^2}{c^2 t_{scatt}}$$

time it takes the particle to explore velocity gradient of length $\beta_E / \nabla \beta_E$ while traveling diffusively with step c t_{scatt}

... Note: role of turbulence limited to scattering?

Stochastic Fermi acceleration in a large-scale, random flow

 \rightarrow what matters is the shear of the velocity flow $\partial_{\alpha} u_{E}^{\beta}$:

ideal MHD conditions: *E* vanishes in frame moving at $u_E \propto E \times B \Rightarrow$ no acceleration in absence of shear

... $\partial_{\alpha} u_E^{\beta} \supset$ compression/dilation, shear, vorticity, + acceleration

© C. Demidem, MHD turb.

→ can be seen as some generalization of discrete, point-like scattering of original Fermi, to continuous flow

Follow the particle momentum in the frame where E=0

 \rightarrow convenient choice¹: follow particle 4-velocity (γ' , $\mathbf{u'}$) in (accelerated!) frame moving at u_E

in that frame, no electric field...

 $\Rightarrow \Delta$ energy \propto non-inertial forces characterized by velocity shear

В

[considers all scales $\gg r_L$, ignores scales $\ll r_L$, assumes local gyromotion around curved magnetic field]

Acceleration in gradients of velocity field

→ distinctive features: acceleration scales with gradient of magnetic energy density (unlike QLT: magnetic energy density)

acceleration sites occupy only a small filling fraction of the total volume (unlike QLT: homogeneous statistics)

in each site, particle gains or loses energy according to sign of Θ (unlike Fermi: head-on vs tail-on)

View from particle-in-cell simulations

 \rightarrow topology of acceleration sites: \sim located in regions of gradients of magnetic energy

© V. Bresci, L. Gremillet, M. L.: 2D PIC, driven turb., e^+e^- , 10 000², $\delta B/B \sim 3$, $\sigma \sim 1$

Comparison between model and simulations

$$\rightarrow$$
 model:

$$\frac{\mathrm{d}\gamma'}{\mathrm{d}\tau} = -\gamma' u_{\parallel}' \boldsymbol{a}_{\boldsymbol{E}} \cdot \boldsymbol{b} - {u_{\parallel}'}^2 \Theta_{\parallel} - \frac{1}{2} {u_{\perp}'}^2 \Theta_{\perp}$$

→ comparison: for each particle history in a simulation, reconstruct $\gamma'(t)$ using above model and velocity gradients measured in the simulation at **x**, t, then measure degree of correlation $r_{Pearson}$ between the observed and reconstructed $\gamma'(t)$

⇒ model captures the dominant contribution to particle energization + dominance of parallel shear contribution (field line curvature)

Refs.: 1. Johns Hopkins U. database, Eyink+ 13

Mismatch between PIC simulations and Fokker-Planck models...

→ Recent PIC simulations¹ reveal *nonthermal powerlaw spectra* (← Fermi acceleration in a closed box?!)

→ consequence: Fokker-Planck is not a good model... a powerlaw tail develops, drift is slow, unlike predictions!

 \rightarrow Interpretation²: segregation in t_{acc} among particle population...

Refs: 1. Zhdankin+17-19, Wong+19, Comisso+Sironi 18,19; Nättilä+Beloborodov21 2. M.L. & Malkov 20

Acceleration in gradients: intermittency steps in

→ an important effect: strength of gradients grow on small scales...
 p.d.f. non-Gaussian, *controlled by intermittency ...*

⇒ localized (sparse) regions of intense gradients, with large powerlaw excursions...

⇒ mean free path to interaction can be macroscopic!

Non-trivial particle transport in intermittent, random velocity flows

 \rightarrow an analytical (simplified) model for the spectrum:

<u>on intermediate time scales t</u> ... random walk with a small filling fraction f_+ , f_- , of active sites... ... large momenta = ``lucky'' particles ⇒ average rate of energy gain related to energy injection in plasma $(f_+ - f_-)$

⇒ presence of inactive regions implies existence of a powerlaw tail at large momenta, at all times... ... mean interaction time with active eddies: $t_{int} = l/(f_+ + f_-)c$

Consequences of intermittency

 \rightarrow analytical spectrum, main properties:

1. **one diffusion coefficient cannot capture the spectrum:** diffusion coefficient

$$\frac{\langle \Delta p^2 \rangle}{2t} = D_{pp} = \frac{p^2}{t_{\rm int}/g^2} \propto u_A^2 \frac{p^2}{\ell_{\rm c}/c}$$

describes broadening of (thermal) Gaussian core, not powerlaw tail.

2. a (quasi-)powerlaw tail subsists at all times, which hardens with time, and with increasing gain/interaction ... as in PIC sims

3. drift is slow, related to energy injection in the plasma

... as in PIC sims

(vs: QLT assumes infinite reservoir of energy for particles!)

time \rightarrow 10^{-2} dM/dlnp 10^{-3} powerlaw Gaussian tail 10^{-4} core 10-5 $\Delta \ln p = g$, gain/interaction \rightarrow 10^{-2} dm/dlnp10-3 10^{-4} 10^{-5} $f_+ - f_- \rightarrow$ 10^{-2} $d M/d \ln p$ 10-3 10^{-4} 10⁻⁵ ∟ 10⁻² 10^{-1} 10° 10^{1} 10^{2} 10^{3} 10^{4} p/p_{inj}

variations vs model parameters

Spectral index as a function of time

 \rightarrow main properties:

3. acceleration timescale: $t_{acc} \sim \frac{t_{int}}{a^2} \sim c l_c/u_A^2$

... an average over the population: in reality, a distribution of acceleration timescales

4. spectral index: ~ 3 for relativistic turbulence, softer for sub-relativistic...
steep spectra are generic (early on)

 \rightarrow PIC simulations:

- ... acceleration timescale ~ $c l_c/u_A^2$
- ... at $u_A \sim 1$, observe index ~ 3 ...

... but, spectrum evolves very slowly beyond ~ 10 ℓ_c/c as max momentum reaches model limit where $r_L \sim \ell_c$...

 \Rightarrow (near-)powerlaw observed at all times

Summary

→ <u>Stochastic particle acceleration in turbulent / random velocity flows:</u>

1. particles gain energy non-resonantly in the large-scale (>r_L) sheared + compressive velocity flows

2. main sources of energy gain: [for isotropic scattering, shear and compression of u_E] at $r_L \ll \ell_c$, shear along and compression transverse to B

3. acceleration regions strongly intermittent: sparse, localized in regions of gradients of B energy, with large powerlaw excursions in strength

4. general agreement of the model with PIC simulations:

→ fair reconstruction of particle histories (in momentum)

→ analytical random walk model reproduces the general trend of spectrum

5. (near) powerlaw spectra of accelerated particles appear generic

1. spectrum differs noticeably from std Fokker-Planck predictions

→ no pile-up distribution, quasi-powerlaw, slow drift: impact on phenomenology? → w/ improved model, including effects of radiative losses → recipe for inclusion in MHD/GRMHD simulations?

2. extrapolation to large hierarchy $\ell_c/(c/\omega_p)$... and other physical conditions

 \rightarrow quasi-powerlaw (log-running), hardening in time vs PIC sims limited in dynamic range...

 \rightarrow dependence on magnetization, beta-parameter, physics of stirring, composition etc.

3. impact of intermittency on transport, acceleration and radiative spectra

→ first experimental indication of ``anomalous'' transport: distribution of acceleration/scattering timescales \Rightarrow ? → on timescale ℓ_c/c , only a small fraction of particles has scattered \Rightarrow expect anisotropies on ℓ_c scales! → inhomogeneous particle spectra in one volume ℓ_c^3 ... consequences for flaring? (time profile?)

 \rightarrow inhomogeneous spectra, u_E and B in one volume ℓ_c^3 ... consequences for radiative spectra?

1. spectrum differs noticeably from std Fokker-Planck predictions

→ no pile-up distribution, quasi-powerlaw, slow drift: impact on phenomenology? → w/ improved model, including effects of radiative losses → recipe for inclusion in MHD/GRMHD simulations?

 \rightarrow microphysical picture based on random walk: probability of energy gain based on $u_E(x, t)$

 \rightarrow alternative, Wong+19: extended FP equation with PIC-adjusted transport coefficients $D_{\gamma\gamma}$, A_{γ}

2. extrapolation to large hierarchy $\ell_c/(c/\omega_p)$... and other physical conditions

 \rightarrow quasi-powerlaw (log-running), hardening in time vs PIC sims limited in dynamic range...

 \rightarrow dependence on magnetization, beta-parameter, physics of stirring, composition etc.

<u>Zhdankin 21:</u> e-ion PIC simulations at $\sigma = 0.02$, Alfvén-like stirring vs compressive

10000

10000

3. impact of intermittency on transport, acceleration and radiative spectra

- \rightarrow first experimental indication of ``anomalous'' transport: distribution of acceleration/scattering timescales \Rightarrow ?
- \rightarrow on timescale ℓ_c/c , only a small fraction of particles has scattered \Rightarrow expect anisotropies on ℓ_c scales!
- \rightarrow inhomogeneous particle spectra in one volume ℓ_c^3 ... consequences for flaring? (time profile?)
- \rightarrow inhomogeneous spectra, u_E and B in one volume ℓ_c^3 ... consequences for radiative spectra?

distribution of scattering timescales: expect strong anisotropies on ℓ_c length scales!

3. impact of intermittency on transport, acceleration and radiative spectra

- \rightarrow first experimental indication of ``anomalous'' transport: distribution of acceleration/scattering timescales \Rightarrow ?
- \rightarrow on timescale ℓ_c/c , only a small fraction of particles has scattered \Rightarrow expect anisotropies on ℓ_c scales!
- \rightarrow inhomogeneous particle spectra in one volume ℓ_c^3 ... consequences for flaring? (time profile?)
- \rightarrow inhomogeneous spectra, u_E and B in one volume ℓ_c^3 ... consequences for radiative spectra?

e.g., Bykov+13 in connection to Crab flares, Khangulyan+21 for synchrotron in inhomogeneous B

3. impact of intermittency on transport, acceleration and radiative spectra

- \rightarrow first experimental indication of ``anomalous'' transport: distribution of acceleration/scattering timescales \Rightarrow ?
- \rightarrow on timescale ℓ_c/c , only a small fraction of particles has scattered \Rightarrow expect anisotropies on ℓ_c scales!
- \rightarrow inhomogeneous particle spectra in one volume ℓ_c^3 ... consequences for flaring? (time profile?)
- \rightarrow inhomogeneous spectra, u_E and B in one volume ℓ_c^3 ... consequences for radiative spectra?

Zhdankin+18:

PIC, relativistic + radiative sims,

anisotropic momentum distribution at large momenta

z (c/w, AYcool 0.00 0.25 0.50 0.75 1.00 10 (Å)ulp/Np 101 10^{0} 10⁰ 10¹ 10² 10³

1. spectrum differs noticeably from std Fokker-Planck predictions

→ no pile-up distribution, quasi-powerlaw, slow drift (connected to energy injection): impact on phenomenology? → w/ improved model, including effects of radiative losses → recipe for inclusion in MHD/GRMHD simulations?

2. extrapolation to large hierarchy $\ell_c/(c/\omega_p)$... and other physical conditions

 \rightarrow quasi-powerlaw (log-running), hardening in time vs PIC sims limited in dynamic range...

 \rightarrow dependence on magnetization, beta-parameter, physics of stirring, composition etc.

3. impact of intermittency on transport, acceleration and radiative spectra

- → first experimental indication of ``anomalous'' transport: distribution of acceleration/scattering timescales \Rightarrow ? → on timescale ℓ_c/c , only a small fraction of particles has scattered \Rightarrow expect anisotropies on ℓ_c scales! → inhomogeneous particle spectra in one volume ℓ_c^3 ... consequences for flaring? (time profile?)
- \rightarrow inhomogeneous spectra, u_E and B in one volume ℓ_c^3 ... consequences for radiative spectra?