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Microphysics of particle acceleration in the high-energy Universe

d
— Lorentz force: d_ltj = q (E + Y B) ... what is the origin of E?
c

1. Acceleration a la Fermi: highly conducting plasma...

— large scale physics (& very high energies?): corresponds to ideal Ohm’s law E=-v,x B /c...

— Fermi-type scenarios: magnetized turbulence, shear flows, shock waves

e —-%

2. “Linear” accelerators: non-MHD flows: 3 E |

— acceleration can proceed unbounded along E (or at least E)...

— gaps in magnetospheres, reconnection (on small scales)
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— particles interact with a sheared,
relativistic turbulent flow on a broad range
of scales...

— particles of different energies experience
different accelerator configurations: fine
structure smeared out over gyroscale...

© C. Demidem, rel. MHD turb.

NB: as in many astrophysical sources, a huge hierarchy between macroscopic scales (/. turbulence scale, r, ) and
microscopic scales (r,): rg/rL~1O6 for a GeV electron in 1G field... a challenge for numerical simulations!
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— particles interact with a sheared,
relativistic turbulent flow on a broad range
of scales...

— particles of different energies experience
different accelerator configurations: fine
structure smeared out over gyroscale...

— multi-stage, hierarchical acceleration
scenarios, from non-ideal processes at the
smallest length scales to Fermi-type
processes at the highest energies



Microphysics of particle acceleration in the high-energy Universe

d
— Lorentz force: d—IZ = q (E + Y B) ... what is the origin of E?
c

1. Acceleration a la Fermi: highly conducting plasma...

— large scale physics (< very high energies?): corresponds to ideal Ohm’s law E=-v,x B /c...

— Fermi-type scenarios: magnetized turbulence, shear flows, shock waves

— two essential characteristics:
1. E vanishes in local frame: classification of Fermi scenarios according to geometry of E fields

2. scattering is essential to explore E fields through cross-B transport



Ferrni acceleration: the issue of scattering

tscatt

acc ™ 52 (applies to original Fermi, shock, turbulence... here fr < 1)

— generic scaling: t

— scattering timescale t time it takes to deflect the particle by an angle of the order of unity,

scatt*

tscatt ~ 1T (Ec/c)l_a (I. coherence length scale of turbulence)

... in absence of specific information, assume (too often!): a~1 Bohm regime
... however:

tscatt / tL

0(1)
if6B = B
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Ferrni acceleration: the issue of scattering

@ : extreme accelerator if Sz ~ 1, synchrotron from e at radiation reaction limit:

2

tscatt —1 mec
acc ~ D) d nd tacc ~ A tL i esyn,max e A
ﬁE Qe m.

~ 100 A~ MeV

t

@ : non-extreme for e, but can reach confinement (Hillas) limit for ions if f; ~ 1,£, ~ source size, 6B = B

@ : particles decouple from turbulence at high-E, slow scattering...
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tscatt / tL
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A case study: shear acceleration

— in shear acceleration, particles gain energy by exploring varying (motional) electric field configurations?...
motional electric field: E = —B X B

small mfp: ¢ tscate K P/VPE
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particles with small mean free
paths explore weak gradient of E
= slow acceleration...

Refs: 1. e.g. Rieger 19

“resonant” mfp: ¢ tycare~ B/VPOE
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particles with near resonant mean
free paths explore strong gradient of E
= fast acceleration...

large mfp: ¢ tscart > Br/VPE

© B
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particles with very large mean free
paths do not see E, decouple from flow
= (very) slow acceleration...



The role of the mean free patn, and of velocity gradients

— in shear acceleration, particles gain energy by exploring varying (motional) electric field configurations...
motional electric field: E = —B X B ... vanishes in frame moving at Bz = E X B/B?

small mfp: ¢ tscare K P/VPE

... at x: in frame moving at 3,
i ( \D E(x)=0 = no acceleration...
Br — o

\ ... particle gains energy because of the

% X existence of a gradient, which
\\ guarantees that the effect of E cannot

n be boosted away everywhere

.. in shear acceleration (peculiar scaling!):

1 (Be/VBEr)’

2
ﬁE 62 tscatt

tacc

particles with small mean free \ time it takes the particle to explore velocity
paths explore weak gradient of E gradient of length Sz /VBE while traveling
= slow acceleration... diffusively with step c t,

.. Note: role of turbulence limited to scattering?



Stochastic Fermi acceleration in o large-scale, random flow

— what matters is the shear of the velocity flow 9 ,uP:

ideal MHD conditions: E vanishes in frame moving at ug « E X B = no acceleration in absence of shear

.. d,uf D compression/dilation, shear, vorticity, + acceleration

expansion/compression

shear
vorticity

acceleration/deceleration

© C. Demidem, MHD turb.

— can be seen as some generalization of discrete, point-like scattering of original Fermi, to continuous flow

Refs: 1. Bykov+Toptygin 81, Ptuskin 88, ..., Ohira 13, ML19, Demidem+20, ML21



Follow the particle rmomenturn in the frarme where E=0

— convenient choice!: follow particle 4-velocity (Y, u’) in (accelerated!) frame moving at ug

in that frame, no electric field...
= A energy o« non-inertial forces characterized by velocity shear

o d~’ 1
— approximation?: d—z/- = —fy’uh ag-b — uhQ Q) — iu’LZ@L

T~

effective gravity compression transverse
along field line to field line

@J_ = (T]aﬁ — babﬁ)aauEﬁ

velocity shear
along field line

-
T O 0y = b*bPd,us,

[considers all scales >> 17, ignores scales < 17, assumes local gyromotion around curved magnetic field]

Refs: 1. ML19 2. ML21



Acceleration in gradients of velocity field

— distinctive features: acceleration scales with gradient of magnetic energy
density (unlike QLT: magnetic energy density)

acceleration sites occupy only a small filling fraction of
the total volume (unlike QLT: homogeneous statistics)

y/ £

in each site, particle gains or loses energy according to
sign of @ (unlike Fermi: head-on vs tail-on)
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View from particle-in-cell simulations

— topology of acceleration sites: ~ located in regions of gradients of magnetic energy

t = 4.324./c dB*
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© V. Bresci, L. Gremillet, M. L.: 2D PIC, driven turb., e*e;, 10 000?, 6B/B~ 3,0 ~ 1



Comparison between rmodel and sirulations

— model: dy _ “Wag-b —u,> 0O —lu’z@
- ar ~  THeE [ e
— comparison: for each particle history in a simulation, reconstruct y’(t) using above model and velocity

gradients measured in the simulation at x, t, then measure degree of correlation rp,,.<,
between the observed and reconstructed y’(t)

PIC simulation: 2D, 10 000?, ee*, 6B/B~ 3,0~ 1 JHU driven incompressible MHD?, 3D, 10243, v, = 0.4c
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= model captures the dominant contribution to particle energization
+ dominance of parallel shear contribution (field line curvature)
Refs.: 1. Johns Hopkins U. database, Eyink+ 13



Mismatch between PIC simulations and Fokker-Planck models...

— Recent PIC simulations?! reveal nonthermal powerlaw spectra (< Fermi acceleration in a closed box?!)

: QLT/Fokker-Planck prediction:

0 1 0 0

o D12 2
——PIC | .- FP: (,%f(p,t) 22 Op [p Dy, 8pf(p’t)]

(1= 002¢/c

10

(Inp — %t/tacc)gl

= sol.: 3f(p.t —
sol P f(p )OceXp[ ST

injection in thermal core:
from dissipation at kinetic
(microscopic) scales, mostly
reconnection

\ non-thermal tail:

from Fermi-type mechanism
(no parallel E field)

v © V. Bresci, L. Gremillet, M. L.: 2D PIC, driven, e*e’, 10 000%, 6B/B~ 3,0~ 1

— consequence: Fokker-Planck is not a good model... a powerlaw tail develops, drift is slow, unlike predictions!

— Interpretation?: segregation in t, . among particle population...

Refs: 1. Zhdankin+17-19, Wong+19, Comisso+Sironi 18,19; Nattila+Beloborodov21 2. M.L. & Malkov 20



Acceleration in gradients: interrittency steps in

— an important effect: strength of gradients grow on small scales...
p.d.f. non-Gaussian, controlled by intermittency ...

= localized (sparse) regions of intense gradients, with
large powerlaw excursions...

= mean free path to interaction can be macroscopic!
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Non-~trivial particle transport in intermittent, randorn velocity flows

— an analytical (simplified) model for the spectrum:

energy gain ___ : Kenergy loss
Alnp = +g BT Alnp = —g

on intermediate time scales t
... random walk with a small filling
fraction f,, f_, of active sites...
... large momenta = “lucky” particles

Refs.: 1. e.glsliker+17; Sioulas+20; ML+Malkov 20; ML21

= average rate of energy gain related to energy
injection in plasma (fy — f_)

= presence of inactive regions implies existence
of a powerlaw tail at large momenta, at all times...
... mean interaction time with active eddies:

tine = U/ (f+ + f-)c



Consequences of interrnittency

— analytical spectrum, main properties:

1. one diffusion coefficient cannot capture the spectrum:
diffusion coefficient
N S A
=LUpp = 7775 XUy
2t tint/g l./c
describes broadening of (thermal) Gaussian core, not
powerlaw tail.

2. a (quasi-)powerlaw tail subsists at all times, which
hardens with time, and with increasing gain/interaction
... as in PIC sims

3. drift is slow, related to energy injection in the plasma
... as in PIC sims
(vs: QLT assumes infinite reservoir of energy for particles!)

dN/dInp
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variations vs model parameters
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Spectral index as a function of tirme

— main properties:

N t;
3. acceleration timescale: t .. ~ ;—“Zt ~cl,/uj

... an average over the population: in reality, a
distribution of acceleration timescales

spectral index

4. spectral index: ~ 3 for relativistic turbulence,
softer for sub-relativistic...

steep spectra are generic (early on) 0 l 2 3 4 5

. . t=0.02¢/c
— PIC simulations: oo b= 0028]c

... acceleration timescale ~ ¢ [, /u3

..atuy ~ 1, observe index ~ 3...

... but, spectrum evolves very slowly beyond ~
10 ¢./c as max momentum reaches model limit
wherer; ~ £,... a

10° 10t 102 10° 104

= - i /
(near )powerlaw observed at all times © V. Bresci, L. Gremilletj M. L.: 2D PIC, e*e’, 100002, 6B/B~ 3,0~ 1



surary

— Stochastic particle acceleration in turbulent / random velocity flows:

1. particles gain energy non-resonantly in the large-scale (>r,) sheared + compressive velocity flows

2. main sources of energy gain:  [for isotropic scattering, shear and compression of ug]
atr; < £, shear along and compression transverse to B

3. acceleration regions strongly intermittent: sparse, localized in regions of gradients of B energy, with
large powerlaw excursions in strength

4. general agreement of the model with PIC simulations:
— fair reconstruction of particle histories (in momentum)

— analytical random walk model reproduces the general trend of spectrum

5. (near) powerlaw spectra of accelerated particles appear generic



y /= ~(r /= 7= = ‘" ’ /= Y /= /= 2~ e ~~
Some conseqguences Jor ,Ofl:’fl()ffl:’fl()/f)gy and open questions
1. spectrum differs noticeably from std Fokker-Planck predictions
— no pile-up distribution, quasi-powerlaw, slow drift: impact on phenomenology?
— w/ improved model, including effects of radiative losses — recipe for inclusion in MHD/GRMHD simulations?
2. extrapolation to large hierarchy £./(c/w,)... and other physical conditions
— quasi-powerlaw (log-running), hardening in time vs PIC sims limited in dynamic range...
— dependence on magnetization, beta-parameter, physics of stirring, composition etc.
3. impact of intermittency on transport, acceleration and radiative spectra
— first experimental indication of “"anomalous’’ transport: distribution of acceleration/scattering timescales =?
— on timescale €. /c, only a small fraction of particles has scattered = expect anisotropies on £, scales!

— inhomogeneous particle spectra in one volume £3... consequences for flaring? (time profile?)
— inhomogeneous spectra, uz and B in one volume £3... consequences for radiative spectra?



Sorne consequences for phenormenology and open questions

1. spectrum differs noticeably from std Fokker-Planck predictions

— no pile-up distribution, quasi-powerlaw, slow drift: impact on phenomenology?
— w/ improved model, including effects of radiative losses — recipe for inclusion in MHD/GRMHD simulations?

— microphysical picture based on random walk: probability of energy gain based on ug(x, t)

— alternative, Wong+19: extended FP equation with PIC-adjusted transport coefficients D, A4,
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Sorne consequences for phenornenology and open questions

2. extrapolation to large hierarchy £./(c/w,)... and other physical conditions

— quasi-powerlaw (log-running), hardening in time vs PIC sims limited in dynamic range...

— dependence on magnetization, beta-parameter, physics of stirring, composition etc.

Zhdankin 21:

ion spectra
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Sorme consequences Jor phenornenology and open questions

3. impact of intermittency on transport, acceleration and radiative spectra

— first experimental indication of “"anomalous’ transport: distribution of acceleration/scattering timescales =?
— on timescale €. /c, only a small fraction of particles has scattered = expect anisotropies on €, scales!

— inhomogeneous particle spectra in one volume £3... consequences for flaring? (time profile?)

— inhomogeneous spectra, ug and B in one volume £3... consequences for radiative spectra?

JHU incompressible MHD, 3D, 10243, v, = 0.4c

102 E

dp / dln tscatt

10’3 E

104 4 , N -
102 107! 100
Lscatt [€C /C]

distribution of scattering timescales: expect strong anisotropies on €, length scales!



Sorne consequences for phenomenology and open questions

3. impact of intermittency on transport, acceleration and radiative spectra

0(1)
if6B = B

— first experimental indication of “"anomalous’ transport: distribution of acceleration/scattering timescales =?
— on timescale 2. /c, only a small fraction of particles has scattered = expect anisotropies on € scales!

— inhomogeneous particle spectra in one volume £3... consequences for flaring? (time profile?)

— inhomogeneous spectra, ug and B in one volume £3... consequences for radiative spectra?

local spectrum = boost(f, ug, B)

local spectrum = boost(f, ug, B)

e.g., Bykov+13 in connection to Crab flares, Khangulyan+21 for synchrotron in inhomogeneous B



Sorne consequences for phenormenology and open questions

3. impact of intermittency on transport, acceleration and radiative spectra

— first experimental indication of “"anomalous’ transport: distribution of acceleration/scattering timescales =?
— on timescale €. /c, only a small fraction of particles has scattered = expect anisotropies on €, scales!

— inhomogeneous particle spectra in one volume £3... consequences for flaring? (time profile?)

— inhomogeneous spectra, ug and B in one volume £3... consequences for radiative spectra?

Nattila+Beloborodov 20:
PIC, relativistic + radiative sims,

Zhdankin+18:
PIC, relativistic + radiative sims,
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Some conseqguences Jor ,Ofl:’fl()ffl:’fl()/f)gy and open questions

1. spectrum differs noticeably from std Fokker-Planck predictions
— no pile-up distribution, quasi-powerlaw, slow drift (connected to energy injection): impact on phenomenology?
— w/ improved model, including effects of radiative losses — recipe for inclusion in MHD/GRMHD simulations?

2. extrapolation to large hierarchy £./(c/w,)... and other physical conditions
— quasi-powerlaw (log-running), hardening in time vs PIC sims limited in dynamic range...
— dependence on magnetization, beta-parameter, physics of stirring, composition etc.

3. impact of intermittency on transport, acceleration and radiative spectra
— first experimental indication of “"anomalous’’ transport: distribution of acceleration/scattering timescales =?
— on timescale €. /c, only a small fraction of particles has scattered = expect anisotropies on £, scales!

— inhomogeneous particle spectra in one volume £3... consequences for flaring? (time profile?)
— inhomogeneous spectra, uz and B in one volume £3... consequences for radiative spectra?



